Research Article
BibTex RIS Cite

The Third Order Variant Narayana Codes and Some Straight Lines Corresponding to These

Year 2022, Volume: 10 Issue: 2, 862 - 871, 30.04.2022
https://doi.org/10.29130/dubited.1007719

Abstract

In this study, firstly, we examined the second order variant Narayana codes and we got some results from the tables were displayed by Das and Sinha. Then, we studied on the third order variant Narayana code and we displayed these codes for some k positive integers and with tables. Also, we got some results from the tables. Then, we compared the results that we obtained from the tables for the third order variant Narayana universal code and the second order variant Narayana universal code in terms of cryptography. We found that third order variant Narayana universal code are much more advantageous than the second order variant Narayana universal code. Finally, we obtained some straight lines which yielding the some the third order Narayana codewords by considering (u,k) as a point in the (x,y) plane, from these tables.

References

  • [1]T. Koshy, Fibonacci and Lucas Numbers with Applications, 2nd Edition, New York, John Wiley&Sons, 2019.
  • [2]J.H. Thomas, “Variations on the Fibonacci universal code,” arXiv: cs/0701085v2, 2007.
  • [3]J. Platos, R. Baca, V. Snasel, M. Kratky, E. El-Qawasmeh, ‘‘Fast Fibonacci encoding algorithm,’’ arXiv: cs/0712.0811v2, 2007.
  • [4]T. Buschmann, L.V. Bystrykh, 2013. ‘‘Levenshtein error-correcting barcodes for multiplexed DNA sequencing,’’ BMC Bioinformatics, vol. 14, no. 1, pp. 272, 2013.
  • [5]K. Kirthi, S. Kak, ‘‘The Narayana Universal Code,’’ arXiv: 1601.07110, 2016.
  • [6]E. Zeckendorf, ‘‘Representation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas,’’ Bulletin de La Society Royale des Sciences de Liege, vol. 41, pp. 179–182, 1972.
  • [7]S.T. Klein, M.K. Ben-Nissan, ‘‘On the usefulness of Fibonacci compression codes,’’ Computer Journal, vol. 53, no. 6, pp. 701–716, 2010.
  • [8]M. Basu, B. Prasad, ‘‘Long range variant of Fibonacci universal code,’’ Journal of Number Theory, vol. 130, pp. 1925-1931, 2010.
  • [9]A. Nalli, C. Ozyilmaz, ‘‘The third order variations on the Fibonacci universal code,’’ Journal of Number Theory, vol. 149, pp. 15-32, 2015.
  • [10]D.E. Daykin, ‘‘Representation of natural numbers as sums of generalized Fibonacci Numbers,’’ Journal of London Mathematical Society, vol. 35, pp. 143-160, 1960.
  • [11]M. Das, S. Sinha, ‘‘A variant of the Narayana coding scheme,’’ Control and Sybernetics, vol. 48, no. 3, pp. 473-484, 2019.
  • [12]C. Çimen, S. Akleylek, E. Akyıldız, Şifrelerin Matematiği Kriptografi, ODTÜ Press, Ankara, 2007.
  • [13]D.R. Stinson, Cryptography Theory and Practice, Chapman & Hall, Ohio, CRC Press, 2002.
  • [14]M. Basu, M. Das, ‘‘Uses of second order variant Fibonacci universal code in cryptography,’’ Control and Cybernetics, vol. 45, no. 2, pp. 239-257, 2016.

Üçüncü Mertebeden Varyant Narayana Kodları ve Bunlara Karşılık Gelen Bazı Doğrular

Year 2022, Volume: 10 Issue: 2, 862 - 871, 30.04.2022
https://doi.org/10.29130/dubited.1007719

Abstract

Bu çalışmada, ilk olarak, ikinci mertebeden variant Narayana kodlarını inceledik ve bu kodlar ile ilgili Das ve Sinha tarafından elde edilen tablolardan bazı sonuçlar elde ettik. Ardından üçüncü mertebeden variant Narayana kodları üzerine çalıştık ve bazı pozitif tam sayıları için bu kodları tablolar ile belirledik. Ayrıca, bu tablolardan bazı sonuçlar elde ettik. Sonrasında, ikinci ve üçüncü mertebeden variant Narayana kodlarını için tablolardan elde ettiğimiz sonuçları kriptografik açıdan karşılaştırdık. Üçüncü mertebeden variant Narayana kodlarının çok daha avantajlı olduğunu elde ettik. Son olarak (u,k) yı (x,y) düzleminde bir nokta olarak kabul ederek tablolara göre bazı Narayana kodlarını veren bazı doğrular elde ettik.

References

  • [1]T. Koshy, Fibonacci and Lucas Numbers with Applications, 2nd Edition, New York, John Wiley&Sons, 2019.
  • [2]J.H. Thomas, “Variations on the Fibonacci universal code,” arXiv: cs/0701085v2, 2007.
  • [3]J. Platos, R. Baca, V. Snasel, M. Kratky, E. El-Qawasmeh, ‘‘Fast Fibonacci encoding algorithm,’’ arXiv: cs/0712.0811v2, 2007.
  • [4]T. Buschmann, L.V. Bystrykh, 2013. ‘‘Levenshtein error-correcting barcodes for multiplexed DNA sequencing,’’ BMC Bioinformatics, vol. 14, no. 1, pp. 272, 2013.
  • [5]K. Kirthi, S. Kak, ‘‘The Narayana Universal Code,’’ arXiv: 1601.07110, 2016.
  • [6]E. Zeckendorf, ‘‘Representation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas,’’ Bulletin de La Society Royale des Sciences de Liege, vol. 41, pp. 179–182, 1972.
  • [7]S.T. Klein, M.K. Ben-Nissan, ‘‘On the usefulness of Fibonacci compression codes,’’ Computer Journal, vol. 53, no. 6, pp. 701–716, 2010.
  • [8]M. Basu, B. Prasad, ‘‘Long range variant of Fibonacci universal code,’’ Journal of Number Theory, vol. 130, pp. 1925-1931, 2010.
  • [9]A. Nalli, C. Ozyilmaz, ‘‘The third order variations on the Fibonacci universal code,’’ Journal of Number Theory, vol. 149, pp. 15-32, 2015.
  • [10]D.E. Daykin, ‘‘Representation of natural numbers as sums of generalized Fibonacci Numbers,’’ Journal of London Mathematical Society, vol. 35, pp. 143-160, 1960.
  • [11]M. Das, S. Sinha, ‘‘A variant of the Narayana coding scheme,’’ Control and Sybernetics, vol. 48, no. 3, pp. 473-484, 2019.
  • [12]C. Çimen, S. Akleylek, E. Akyıldız, Şifrelerin Matematiği Kriptografi, ODTÜ Press, Ankara, 2007.
  • [13]D.R. Stinson, Cryptography Theory and Practice, Chapman & Hall, Ohio, CRC Press, 2002.
  • [14]M. Basu, M. Das, ‘‘Uses of second order variant Fibonacci universal code in cryptography,’’ Control and Cybernetics, vol. 45, no. 2, pp. 239-257, 2016.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Çağla Çelemoğlu 0000-0003-0572-8132

Publication Date April 30, 2022
Published in Issue Year 2022 Volume: 10 Issue: 2

Cite

APA Çelemoğlu, Ç. (2022). The Third Order Variant Narayana Codes and Some Straight Lines Corresponding to These. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 10(2), 862-871. https://doi.org/10.29130/dubited.1007719
AMA Çelemoğlu Ç. The Third Order Variant Narayana Codes and Some Straight Lines Corresponding to These. DUBİTED. April 2022;10(2):862-871. doi:10.29130/dubited.1007719
Chicago Çelemoğlu, Çağla. “The Third Order Variant Narayana Codes and Some Straight Lines Corresponding to These”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 10, no. 2 (April 2022): 862-71. https://doi.org/10.29130/dubited.1007719.
EndNote Çelemoğlu Ç (April 1, 2022) The Third Order Variant Narayana Codes and Some Straight Lines Corresponding to These. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10 2 862–871.
IEEE Ç. Çelemoğlu, “The Third Order Variant Narayana Codes and Some Straight Lines Corresponding to These”, DUBİTED, vol. 10, no. 2, pp. 862–871, 2022, doi: 10.29130/dubited.1007719.
ISNAD Çelemoğlu, Çağla. “The Third Order Variant Narayana Codes and Some Straight Lines Corresponding to These”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10/2 (April 2022), 862-871. https://doi.org/10.29130/dubited.1007719.
JAMA Çelemoğlu Ç. The Third Order Variant Narayana Codes and Some Straight Lines Corresponding to These. DUBİTED. 2022;10:862–871.
MLA Çelemoğlu, Çağla. “The Third Order Variant Narayana Codes and Some Straight Lines Corresponding to These”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 10, no. 2, 2022, pp. 862-71, doi:10.29130/dubited.1007719.
Vancouver Çelemoğlu Ç. The Third Order Variant Narayana Codes and Some Straight Lines Corresponding to These. DUBİTED. 2022;10(2):862-71.