Research Article
BibTex RIS Cite

Investigation of Time-Dependent Electrical Resistivity and Mechanical Properties of Glass Powder and Fly Ash Additive Mortars

Year 2022, Volume: 10 Issue: 5, 91 - 106, 26.12.2022
https://doi.org/10.29130/dubited.1093355

Abstract

Mineral additives are preferred to improve the physical, mechanical and durability properties of cement-based composites and to reduce the amount of cement used. By reducing the use of cement, it is ensured that environmental pollution and the high cost of cement production are prevented. In this context, Glass Powder (CT) and Fly Ash (UK) were added to the mixture by replacing 10%, 20% and 30% by weight of cement. In the production of the mortar samples, CEM I 42.5/R type Portland cement was used as the binder, and 0-4 mm crushed sand was used as the aggregate. After the samples produced in the laboratory with dimensions of 40x40x160 mm were removed from the mold, they were cured in the standard curing pool at 20±2 °C for 7, 28, 56, 90 and 180 days. Flow table test, compressive strength, flexural strength and electrical resistivity tests were performed on hardened mortar samples. According to the data obtained as a result of experimental studies, the addition of CT and UK at an early age decreased the electrical resistivity, but the resistance increased significantly as the age of the sample progressed. While the 180-day electrical resistivity value was 0.04223 kΩm in the REF sample, it reached 0.04755 kΩm in the 30%UK sample and 0.04621 kΩm in the 30% CT sample.

References

  • [1]S. Shaikuthali, M. Mannan, E.T. Dawood, D. Teo, R. Ahmadi, I. Ismail, “Workability and compressive strength properties of normal weight concrete using high dosage of fly ash as cement replacement,” J. Build. Pathol. Rehabilitation, vol. 4 no.1, pp. 26, 2019.
  • [2]C. Valderrama, R. Granados, J.L. Cortina, C.M. Gasol, M. Guillem, “Josa Implementation of best available techniques in cement manufacturing: a life-cycle assessment study,” J Clean Prod, vol. 25, pp. 60-67, 2012.
  • [3]A. Josa, A. Aguado, A. Cardim, E. Byars, “Comparative analysis of the life cycle impact assessment of available cement inventories in the EU,” Cement Concr Res, vol. 37 no. 5, pp. 781-788, 2007.
  • [4]M. Uysal, M.M. Al-mashhadani, Y. Aygörmez, O. Canpolat, “Effect of using colemanite waste and silica fume as partial replacement on the performance of metakaolin-based geopolymer mortars,” Construction and Building Materials, vol. 176, pp. 271-282, 2018.
  • [5]X. Liang, C. Wu, Y. Su, Z. Chen, Z. Li, “Development of ultra-high-performance concrete with high fire resistance,” Construction and Building Materials, vol. 179, pp. 400–412, 2018.
  • [6]M. Rafieizonooz, J. Mirza, M.R. Salim, M.W. E. Hussin, “Khankhaje Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement,” Construct Build Mater, vol. 116, pp. 15-24, 2016.
  • [7]A.M. Hakamy, “Microstructural design of high-performance natural fibre-nanoclay-cement nanocomposites,” Curtin University, Australia, 2016.
  • [8]G.F. Huseien, A. R. M. Sam, K. W. Shah, J. Mirza, M. M. Tahir, “Evaluation of alkaliactivated mortars containing high volume waste ceramic powder and fly ash replacing GBFS,” Construction and Building Materials, vol. 210, pp. 78-92, 2019.
  • [9]J. Temuujin, E. Surenjav, C.H. Ruescher, J. Vahlbruch, “Processing and uses of fly ash addressing radioactivity (critical review),” Chemosphere, vol. 216, pp. 866-882, 2019.
  • [10]M. Saafi , K. Andrew , PL Tang , D. McGhon , S. Taylor , M. Rahman , S. Yang , X. Zho, “Multifunctional properties of carbon nanotube/fly ash geopolymeric nanocomposites,” Construction and Building Materials, vol. 49, pp. 46–55, 2013.
  • [11]N. Ranjbar , M. Mehrali , M. Mehrali , UJ Alengaram , MZ Jumaat, “Graphene nanoplatelet-fly ash based geopolymer composites,” Cement and Concrete Research, vol. 76, pp. 222–231, 2015. [12]H. Xiyili , S. Çetintaş , D. “Bingöl,Removal of some heavy metals onto mechanically activated fly ash: Modeling approach for optimization, isotherms, kinetics and thermodynamics” Process Safety and Environmental Protection, vol. 109, pp. 288 – 300, 2017.
  • [13]Y. Hefni , YAE Zaher , MA Wahab, “Influence of activation of fly ash on the mechanical properties of concrete,” Construction and Building Materials, vol. 172, pp. 728–734, 2018.
  • [14]D.P. Bentz, J. Tanesi, A. Ardani, “Ternary blends for controlling cost and carbon content,” Concr. Int., vol. 35 no. 8, pp. 51-59, 2013.
  • [15]L. Gurney, D.P. Bentz, T. Sato, W.J. Weiss, “Using limestone to reduce set retardation in high volume fly ash mixtures: improving constructability for sustainability” Concr. Mater., Transp. Res. Rec. J. Transp. Res. Board No 2290 pp. 139-146, 2012.
  • [16]D.P. Bentz, T. de la Sato, I. Varga, W.J. Weiss, “Fine limestone additions to regulate setting in high volume fly ash mixtures,” Cem. Concr. Compos., vol. 34, pp.11-17, 2012.
  • [17]R. Yu, D. Van Onna, P. Spiesz, Q. Yu, H. Brouwers, “Development of ultra-lightweight fibre reinforced concrete applying expanded waste glass,” J Clean Prod, vol. 112, pp. 690-701, 2016.
  • [18]A. Shayan, A. Xu, “Value-added utilisation of waste glass in concrete,” Cement Concr Res, vol. 34 no. 1, pp. 81-89, 2004.
  • [19]G. Vijayakumar, H. Vishaliny, D. Govindarajulu, “Studies on glass powder as partial replacement of cement in concrete production,” Int. J. Emerg. Technol. Adv. Eng., vol. 3, no. 2, pp. 153-157, 2013.
  • [20]G.S. Islam, M. Rahman, N. Kazi, “Waste glass powder as partial replacement of cement for sustainable concrete practice,” Int. J. Sustain. Built Environ., vol. 6 no. 1, pp. 37-44, 2017.
  • [21]K. Liang, X. Zeng, X. Zhou, F. Qu, P. Wang, “A new model for the electrical conductivity of cement-based material by considering pore size distribution,” Mag. Concr. Res., vol. 69 no. 20, pp. 1067-1078, 2017.
  • [22]K. Liang, X. Zeng, X. Zhou, C. Ling, P. Wang, K. Li, S. Ya, “Investigation of the capillary rise in cement-based materials by using electrical resistivity measurement,” Constr. Build. Mater., vol. 173, pp. 811-819, 2018.
  • [23]R. Masoodi, K.M. Pillai, “Wicking in Porous Materials: Traditional and Modern Modeling Approaches CRC Press”, 2012.
  • [24]C. Hall, W.D. HoffWater, “Transport in Brick, Stone and Concrete,” CRC Press, 2011.
  • [25]L. Zhao, X, Liu, H, Zhao, “The study of influence on track stress caused by the cracking at wide juncture of CRTS II prefabricated slab track” J Railw Sci Eng., vol. 13 no. 1, pp. 9–14, 2016.
  • [26]D.A. Whiting, M.A. Nagi, “Electrical resistivity of concrete-a literature review,” R&D Serial, vol. 2457, 2003.
  • [27]F. Rajabipour, J. Weiss, “Electrical conductivity of drying cement paste,” Mater. Struct., vol. 40 no. 10, pp. 1143-1160, 2007.
  • [28]S. Tang, X. Cai, Z. He, W. Zhou, H. Shao, Z. Li, T. Wu, E. Chen, “The review of pore structure evaluation in cementitious materials by electrical methods,” Constr. Build. Mater., vol. 117, pp. 273-284, 2016.
  • [29]R. He, H. Ma, R. B. Hafiz, C. Fu, X. Jin, J. He, “Determining porosity and pore network connectivity of cement-based materials by a modified non-contact electrical resistivity measurement: Experiment and theory,” Mater. Des., vol. 156, pp. 82-92, 2018.
  • [30]O.E. Gjørv, Ø.E. Vennesland, A.H.S. El-Busaidy, “Electrical “Resistivity of Concrete In The Oceans,” Offshore Technology Conference, Houston, TX, ABD, 05 May. 1977.
  • [31]R. Polder, “Test methods for onsite measurement of resistivity of concrete — a RILEM TC-154 technical recommendation,” Construction and Building Materials, vol. 15 pp. 125–131, 2001.
  • [32]L. Bertolini, B. Elşener, P. Pedeferri, R. Polder, “Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair, 2nd Edition” Wiley Blackwell: Weinheim, Almanya, ISBN 9783527603374, 2005.
  • [33]T.C. Hou, V.K. Nguyen, Y.M. Su, Y.R. Chen, P.J. Chen, “Effects of coarse aggregates on the electrical resistivity of Portland cement concrete,” Construction and Building Materials, vol. 133, pp. 397–408, 2017.
  • [34]T.K. Simon, V. Vass, “The electrıcal resistivity of concrete”. Concrete Structures, pp. 61-65, 2012.
  • [35]M. Collepardi, “New Concrete ; Tintoretto: Lancenigo” İtalya, 2010; ISBN 88-903777-2-0.
  • [36]B. Dong, J. Zhang, Y. Wang, G. Fang, Y. Liu, F. Xing, “Evolutionary trace for early hydration of cement paste using electrical resistivity method,” Construction and Building Materials, vol. 119, pp. 16-20, 2016
  • [37]W. Lopez, J.A. Gonzalez, C. Andrade, “Influence of temperature on the service life of rebars,” Cement and Concrete Research, vol. 23, pp. 1130-1140, 1993.
  • [38]R.M. Ferreira, S. Jalali, “NDT measurements for the prediction of 28-day compressive strength,” NDT E Int., vol. 43, pp. 55–61, 2010.
  • [39]B.B. Hope, A.C. Ip, “Corrosion of steel in concrete made with slag cement,” ACI Mater. J., vol. 84, pp. 525–531, 1987.
  • [40]J. Bijen, “Benefits of slag and fly ash,” Constr. Build. Mater. Vol 10, pp. 309–314, 1996.
  • [41]G. Adil, J.T. Kevern, D. Mann, “Influence of silica fume on mechanical and durability of pervious concrete,” Constr. Build. Mater., vol. 247, pp. 118453, 2020.
  • [42]T.H. Wee, A.K. Suryavanshi, S.S. Tin, “Evaluation of rapid chloride permeability test (RCPT) results for concrete containing mineral admixtures,” ACI Struct. J., vol. 97, pp. 221-232, 2000.
  • [43]J. Donnini, T. Bellezze, V. Corinaldesi, “Mechanical, electrical and self-sensing properties of cementitious mortars containing short carbon fibers,” J. Build. Eng., vol. 20, pp. 8-14, 2018.
  • [44]C.G. Berrocal, K. Hornbostel, M.R. Geiker, I. Löfgren, K. Lundgren, D.G. Bekas, “Electrical resistivity measurements in steel fibre reinforced cementitious materials,” Cem. Concr. Compos., vol. 89, pp. 216-229, 2018.
  • [45]M. Chiarello, R. Zinno, “Electrical conductivity of self-monitoring CFRC,” Cem. Concr. Compos., vol. 27, pp. 463–469, 2005.
  • [46]H.W. Whittington, J. McCarter, M.C. Forde, “The conduction of electricity through concrete,” Mag. Concr. Res., vol. 33, pp. 48–60, 1981.
  • [47]Beton agregaları, Türk Standartlar Enstitüsü TS 706 EN 12620+A1, 2009.
  • [48]Agregaların mekanik ve fiziksel özellikleri için deneyler bölüm 6: Tane yoğunluğu ve su emme oranının tayini, Türk Standartlar Enstitüsü, TS EN 1097-6, 2013.
  • [49]Beton-Karma Suyu-Numune Alma, deneyler ve beton endüstrisindeki işlemlerden geri kazanılan su dahil, suyun, beton karma suyu olarak uygunluğunun tayini kuralları, Türk Standartlar Enstitüsü TS EN 1008, 2003.
  • [50]Çimento - Bölüm 1: Genel çimentolar - Bileşim, özellikler ve uygunluk kriterleri, Türk Standartlar Enstitüsü TS EN 197-1, 2012.
  • [51]Standard Specification for Coal Fly Ash And Raw Or Calcined Natural Pozzolan For Use In Concrete, ASTM International Standard ASTM C 618-19, 2019.
  • [52]Çimento deney metotları-Bölüm 1: Dayanım tayini, Türk Standartlar Enstitüsü TS EN 196-1, 2016.
  • [53]Kagir harcı - Deney metotları - Bölüm 3: Taze harç kıvamının tayini (yayılma tablası ile), Türk Standartlar Enstitüsü TS EN 1015-3, 2000.
  • [54]Beton - Sertleşmiş beton deneyleri - Bölüm 4: Basınç dayanımı - Deney makinelerının özellikleri, Türk Standartlar Enstitüsü TS EN 12390-4, 2002.
  • [55]Standard test method for bulk electrical conductivity of hardened concrete.West Conshohocken (PA), ASTM International Standard, ASTM C 1760, 2012.
  • [56]K.I.M. Ibrahim, “Recycled waste glass powder as a partial replacement of cement in concrete containing silica fume and fly ash” Case Studies in Construction Materials, vol. 15, 2021.
  • [57]O. Sengul, “Use of electrical resistivity as an indicator for durability,” Construction and Building Materials, vol. 73, pp. 434–441, 2014.
  • [58]C.T. Chen, J.J. Chang, W. Yeih, “The effects of specimen parameters on the resistivity of concrete,” Constr. Build. Mater., vol. 71, pp. 35–43, 2014. [59]K. Güçlüer, “Polimer Katkılı Harçların Mekanik ve Elektriksel Özdirenç Özelliklerinin Araştırılması” Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 9 s. 4 ss.1649-1654, 2020.
  • [60]T. Uygunoğlu, İ.B. Topçu, B. Şimşek, E. Çınar, “Kendiliğinden yerleşen harçların elektriksel özdirenci üzerine mineral katkıların etkisi,” Süleyman Demirel Üniversitesi Fen Bilimleri Dergisi, c. 22 s. 2, ss. 986-992, 2018.

Cam Tozu ve Uçucu Kül Katkılı Harçların Zamana Bağlı Elektriksel Özdirenç ve Mekanik Özelliklerinin İncelenmesi

Year 2022, Volume: 10 Issue: 5, 91 - 106, 26.12.2022
https://doi.org/10.29130/dubited.1093355

Abstract

Mineral katkılar, çimento esaslı kompozitlerin bazı özelliklerini iyileştirmek ve çimento miktarını azaltmak için beton karışımında kullanılmaktadır. Kullanılan çimento miktarının azaltılması ile çevre kirliliğinin ve çimento üretimi sırasındaki yüksek maliyetin önüne geçilmesi sağlanmaktadır. Bu kapsamda çimento ile ağırlıkça %10, %20 ve %30 oranlarında yer değiştirilerek Cam Tozu (CT) ve Uçucu Kül (UK) karışıma ilave edilmiştir. Harç numunelerinin hazırlanmasında bağlayıcı olarak CEM I 42.5/R tipi Portland çimentosu, agrega olarak ise 0-4 mm boyutlarında kırma kum kullanılmıştır. Laboratuvar ortamında 40x40x160 mm boyutlarında üretilen numuneler kalıptan çıkarıldıktan sonra, standart kür havuzunda 7, 28, 56, 90 ve 180 gün boyunca 20±2 °C sıcaklıkta kür edilmiştir. Taze haldeki harç numunelerine yayılma, sertleşmiş harç numunelerine ise basınç ve eğilme dayanımı ile elektriksel özdirenç deneyleri yapılmıştır. Deneysel çalışmalar sonucu elde edilen veriler doğrultusunda erken yaşta CT ve UK ilavesinin elektriksel özdirenci düşürdüğünü fakat numune yaşı ilerledikçe artışlar meydana geldiği görülmektedir. 180 günlük elektriksel özdirenç değeri REF numunesinde 0.04223 kΩm iken %30UK numunesinde 0.04755 kΩm, %30 CT numunesinde ise 0,04621 kΩm değerine ulaşmıştır. 

References

  • [1]S. Shaikuthali, M. Mannan, E.T. Dawood, D. Teo, R. Ahmadi, I. Ismail, “Workability and compressive strength properties of normal weight concrete using high dosage of fly ash as cement replacement,” J. Build. Pathol. Rehabilitation, vol. 4 no.1, pp. 26, 2019.
  • [2]C. Valderrama, R. Granados, J.L. Cortina, C.M. Gasol, M. Guillem, “Josa Implementation of best available techniques in cement manufacturing: a life-cycle assessment study,” J Clean Prod, vol. 25, pp. 60-67, 2012.
  • [3]A. Josa, A. Aguado, A. Cardim, E. Byars, “Comparative analysis of the life cycle impact assessment of available cement inventories in the EU,” Cement Concr Res, vol. 37 no. 5, pp. 781-788, 2007.
  • [4]M. Uysal, M.M. Al-mashhadani, Y. Aygörmez, O. Canpolat, “Effect of using colemanite waste and silica fume as partial replacement on the performance of metakaolin-based geopolymer mortars,” Construction and Building Materials, vol. 176, pp. 271-282, 2018.
  • [5]X. Liang, C. Wu, Y. Su, Z. Chen, Z. Li, “Development of ultra-high-performance concrete with high fire resistance,” Construction and Building Materials, vol. 179, pp. 400–412, 2018.
  • [6]M. Rafieizonooz, J. Mirza, M.R. Salim, M.W. E. Hussin, “Khankhaje Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement,” Construct Build Mater, vol. 116, pp. 15-24, 2016.
  • [7]A.M. Hakamy, “Microstructural design of high-performance natural fibre-nanoclay-cement nanocomposites,” Curtin University, Australia, 2016.
  • [8]G.F. Huseien, A. R. M. Sam, K. W. Shah, J. Mirza, M. M. Tahir, “Evaluation of alkaliactivated mortars containing high volume waste ceramic powder and fly ash replacing GBFS,” Construction and Building Materials, vol. 210, pp. 78-92, 2019.
  • [9]J. Temuujin, E. Surenjav, C.H. Ruescher, J. Vahlbruch, “Processing and uses of fly ash addressing radioactivity (critical review),” Chemosphere, vol. 216, pp. 866-882, 2019.
  • [10]M. Saafi , K. Andrew , PL Tang , D. McGhon , S. Taylor , M. Rahman , S. Yang , X. Zho, “Multifunctional properties of carbon nanotube/fly ash geopolymeric nanocomposites,” Construction and Building Materials, vol. 49, pp. 46–55, 2013.
  • [11]N. Ranjbar , M. Mehrali , M. Mehrali , UJ Alengaram , MZ Jumaat, “Graphene nanoplatelet-fly ash based geopolymer composites,” Cement and Concrete Research, vol. 76, pp. 222–231, 2015. [12]H. Xiyili , S. Çetintaş , D. “Bingöl,Removal of some heavy metals onto mechanically activated fly ash: Modeling approach for optimization, isotherms, kinetics and thermodynamics” Process Safety and Environmental Protection, vol. 109, pp. 288 – 300, 2017.
  • [13]Y. Hefni , YAE Zaher , MA Wahab, “Influence of activation of fly ash on the mechanical properties of concrete,” Construction and Building Materials, vol. 172, pp. 728–734, 2018.
  • [14]D.P. Bentz, J. Tanesi, A. Ardani, “Ternary blends for controlling cost and carbon content,” Concr. Int., vol. 35 no. 8, pp. 51-59, 2013.
  • [15]L. Gurney, D.P. Bentz, T. Sato, W.J. Weiss, “Using limestone to reduce set retardation in high volume fly ash mixtures: improving constructability for sustainability” Concr. Mater., Transp. Res. Rec. J. Transp. Res. Board No 2290 pp. 139-146, 2012.
  • [16]D.P. Bentz, T. de la Sato, I. Varga, W.J. Weiss, “Fine limestone additions to regulate setting in high volume fly ash mixtures,” Cem. Concr. Compos., vol. 34, pp.11-17, 2012.
  • [17]R. Yu, D. Van Onna, P. Spiesz, Q. Yu, H. Brouwers, “Development of ultra-lightweight fibre reinforced concrete applying expanded waste glass,” J Clean Prod, vol. 112, pp. 690-701, 2016.
  • [18]A. Shayan, A. Xu, “Value-added utilisation of waste glass in concrete,” Cement Concr Res, vol. 34 no. 1, pp. 81-89, 2004.
  • [19]G. Vijayakumar, H. Vishaliny, D. Govindarajulu, “Studies on glass powder as partial replacement of cement in concrete production,” Int. J. Emerg. Technol. Adv. Eng., vol. 3, no. 2, pp. 153-157, 2013.
  • [20]G.S. Islam, M. Rahman, N. Kazi, “Waste glass powder as partial replacement of cement for sustainable concrete practice,” Int. J. Sustain. Built Environ., vol. 6 no. 1, pp. 37-44, 2017.
  • [21]K. Liang, X. Zeng, X. Zhou, F. Qu, P. Wang, “A new model for the electrical conductivity of cement-based material by considering pore size distribution,” Mag. Concr. Res., vol. 69 no. 20, pp. 1067-1078, 2017.
  • [22]K. Liang, X. Zeng, X. Zhou, C. Ling, P. Wang, K. Li, S. Ya, “Investigation of the capillary rise in cement-based materials by using electrical resistivity measurement,” Constr. Build. Mater., vol. 173, pp. 811-819, 2018.
  • [23]R. Masoodi, K.M. Pillai, “Wicking in Porous Materials: Traditional and Modern Modeling Approaches CRC Press”, 2012.
  • [24]C. Hall, W.D. HoffWater, “Transport in Brick, Stone and Concrete,” CRC Press, 2011.
  • [25]L. Zhao, X, Liu, H, Zhao, “The study of influence on track stress caused by the cracking at wide juncture of CRTS II prefabricated slab track” J Railw Sci Eng., vol. 13 no. 1, pp. 9–14, 2016.
  • [26]D.A. Whiting, M.A. Nagi, “Electrical resistivity of concrete-a literature review,” R&D Serial, vol. 2457, 2003.
  • [27]F. Rajabipour, J. Weiss, “Electrical conductivity of drying cement paste,” Mater. Struct., vol. 40 no. 10, pp. 1143-1160, 2007.
  • [28]S. Tang, X. Cai, Z. He, W. Zhou, H. Shao, Z. Li, T. Wu, E. Chen, “The review of pore structure evaluation in cementitious materials by electrical methods,” Constr. Build. Mater., vol. 117, pp. 273-284, 2016.
  • [29]R. He, H. Ma, R. B. Hafiz, C. Fu, X. Jin, J. He, “Determining porosity and pore network connectivity of cement-based materials by a modified non-contact electrical resistivity measurement: Experiment and theory,” Mater. Des., vol. 156, pp. 82-92, 2018.
  • [30]O.E. Gjørv, Ø.E. Vennesland, A.H.S. El-Busaidy, “Electrical “Resistivity of Concrete In The Oceans,” Offshore Technology Conference, Houston, TX, ABD, 05 May. 1977.
  • [31]R. Polder, “Test methods for onsite measurement of resistivity of concrete — a RILEM TC-154 technical recommendation,” Construction and Building Materials, vol. 15 pp. 125–131, 2001.
  • [32]L. Bertolini, B. Elşener, P. Pedeferri, R. Polder, “Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair, 2nd Edition” Wiley Blackwell: Weinheim, Almanya, ISBN 9783527603374, 2005.
  • [33]T.C. Hou, V.K. Nguyen, Y.M. Su, Y.R. Chen, P.J. Chen, “Effects of coarse aggregates on the electrical resistivity of Portland cement concrete,” Construction and Building Materials, vol. 133, pp. 397–408, 2017.
  • [34]T.K. Simon, V. Vass, “The electrıcal resistivity of concrete”. Concrete Structures, pp. 61-65, 2012.
  • [35]M. Collepardi, “New Concrete ; Tintoretto: Lancenigo” İtalya, 2010; ISBN 88-903777-2-0.
  • [36]B. Dong, J. Zhang, Y. Wang, G. Fang, Y. Liu, F. Xing, “Evolutionary trace for early hydration of cement paste using electrical resistivity method,” Construction and Building Materials, vol. 119, pp. 16-20, 2016
  • [37]W. Lopez, J.A. Gonzalez, C. Andrade, “Influence of temperature on the service life of rebars,” Cement and Concrete Research, vol. 23, pp. 1130-1140, 1993.
  • [38]R.M. Ferreira, S. Jalali, “NDT measurements for the prediction of 28-day compressive strength,” NDT E Int., vol. 43, pp. 55–61, 2010.
  • [39]B.B. Hope, A.C. Ip, “Corrosion of steel in concrete made with slag cement,” ACI Mater. J., vol. 84, pp. 525–531, 1987.
  • [40]J. Bijen, “Benefits of slag and fly ash,” Constr. Build. Mater. Vol 10, pp. 309–314, 1996.
  • [41]G. Adil, J.T. Kevern, D. Mann, “Influence of silica fume on mechanical and durability of pervious concrete,” Constr. Build. Mater., vol. 247, pp. 118453, 2020.
  • [42]T.H. Wee, A.K. Suryavanshi, S.S. Tin, “Evaluation of rapid chloride permeability test (RCPT) results for concrete containing mineral admixtures,” ACI Struct. J., vol. 97, pp. 221-232, 2000.
  • [43]J. Donnini, T. Bellezze, V. Corinaldesi, “Mechanical, electrical and self-sensing properties of cementitious mortars containing short carbon fibers,” J. Build. Eng., vol. 20, pp. 8-14, 2018.
  • [44]C.G. Berrocal, K. Hornbostel, M.R. Geiker, I. Löfgren, K. Lundgren, D.G. Bekas, “Electrical resistivity measurements in steel fibre reinforced cementitious materials,” Cem. Concr. Compos., vol. 89, pp. 216-229, 2018.
  • [45]M. Chiarello, R. Zinno, “Electrical conductivity of self-monitoring CFRC,” Cem. Concr. Compos., vol. 27, pp. 463–469, 2005.
  • [46]H.W. Whittington, J. McCarter, M.C. Forde, “The conduction of electricity through concrete,” Mag. Concr. Res., vol. 33, pp. 48–60, 1981.
  • [47]Beton agregaları, Türk Standartlar Enstitüsü TS 706 EN 12620+A1, 2009.
  • [48]Agregaların mekanik ve fiziksel özellikleri için deneyler bölüm 6: Tane yoğunluğu ve su emme oranının tayini, Türk Standartlar Enstitüsü, TS EN 1097-6, 2013.
  • [49]Beton-Karma Suyu-Numune Alma, deneyler ve beton endüstrisindeki işlemlerden geri kazanılan su dahil, suyun, beton karma suyu olarak uygunluğunun tayini kuralları, Türk Standartlar Enstitüsü TS EN 1008, 2003.
  • [50]Çimento - Bölüm 1: Genel çimentolar - Bileşim, özellikler ve uygunluk kriterleri, Türk Standartlar Enstitüsü TS EN 197-1, 2012.
  • [51]Standard Specification for Coal Fly Ash And Raw Or Calcined Natural Pozzolan For Use In Concrete, ASTM International Standard ASTM C 618-19, 2019.
  • [52]Çimento deney metotları-Bölüm 1: Dayanım tayini, Türk Standartlar Enstitüsü TS EN 196-1, 2016.
  • [53]Kagir harcı - Deney metotları - Bölüm 3: Taze harç kıvamının tayini (yayılma tablası ile), Türk Standartlar Enstitüsü TS EN 1015-3, 2000.
  • [54]Beton - Sertleşmiş beton deneyleri - Bölüm 4: Basınç dayanımı - Deney makinelerının özellikleri, Türk Standartlar Enstitüsü TS EN 12390-4, 2002.
  • [55]Standard test method for bulk electrical conductivity of hardened concrete.West Conshohocken (PA), ASTM International Standard, ASTM C 1760, 2012.
  • [56]K.I.M. Ibrahim, “Recycled waste glass powder as a partial replacement of cement in concrete containing silica fume and fly ash” Case Studies in Construction Materials, vol. 15, 2021.
  • [57]O. Sengul, “Use of electrical resistivity as an indicator for durability,” Construction and Building Materials, vol. 73, pp. 434–441, 2014.
  • [58]C.T. Chen, J.J. Chang, W. Yeih, “The effects of specimen parameters on the resistivity of concrete,” Constr. Build. Mater., vol. 71, pp. 35–43, 2014. [59]K. Güçlüer, “Polimer Katkılı Harçların Mekanik ve Elektriksel Özdirenç Özelliklerinin Araştırılması” Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 9 s. 4 ss.1649-1654, 2020.
  • [60]T. Uygunoğlu, İ.B. Topçu, B. Şimşek, E. Çınar, “Kendiliğinden yerleşen harçların elektriksel özdirenci üzerine mineral katkıların etkisi,” Süleyman Demirel Üniversitesi Fen Bilimleri Dergisi, c. 22 s. 2, ss. 986-992, 2018.
There are 58 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Behcet Dündar 0000-0003-0724-9469

Emriye Çınar Resuloğulları 0000-0002-9435-2968

Turhan Can Karcı 0000-0002-2993-0178

Atahan Dönmez 0000-0002-1180-9185

Publication Date December 26, 2022
Published in Issue Year 2022 Volume: 10 Issue: 5

Cite

APA Dündar, B., Çınar Resuloğulları, E., Karcı, T. C., Dönmez, A. (2022). Cam Tozu ve Uçucu Kül Katkılı Harçların Zamana Bağlı Elektriksel Özdirenç ve Mekanik Özelliklerinin İncelenmesi. Duzce University Journal of Science and Technology, 10(5), 91-106. https://doi.org/10.29130/dubited.1093355
AMA Dündar B, Çınar Resuloğulları E, Karcı TC, Dönmez A. Cam Tozu ve Uçucu Kül Katkılı Harçların Zamana Bağlı Elektriksel Özdirenç ve Mekanik Özelliklerinin İncelenmesi. DUBİTED. December 2022;10(5):91-106. doi:10.29130/dubited.1093355
Chicago Dündar, Behcet, Emriye Çınar Resuloğulları, Turhan Can Karcı, and Atahan Dönmez. “Cam Tozu Ve Uçucu Kül Katkılı Harçların Zamana Bağlı Elektriksel Özdirenç Ve Mekanik Özelliklerinin İncelenmesi”. Duzce University Journal of Science and Technology 10, no. 5 (December 2022): 91-106. https://doi.org/10.29130/dubited.1093355.
EndNote Dündar B, Çınar Resuloğulları E, Karcı TC, Dönmez A (December 1, 2022) Cam Tozu ve Uçucu Kül Katkılı Harçların Zamana Bağlı Elektriksel Özdirenç ve Mekanik Özelliklerinin İncelenmesi. Duzce University Journal of Science and Technology 10 5 91–106.
IEEE B. Dündar, E. Çınar Resuloğulları, T. C. Karcı, and A. Dönmez, “Cam Tozu ve Uçucu Kül Katkılı Harçların Zamana Bağlı Elektriksel Özdirenç ve Mekanik Özelliklerinin İncelenmesi”, DUBİTED, vol. 10, no. 5, pp. 91–106, 2022, doi: 10.29130/dubited.1093355.
ISNAD Dündar, Behcet et al. “Cam Tozu Ve Uçucu Kül Katkılı Harçların Zamana Bağlı Elektriksel Özdirenç Ve Mekanik Özelliklerinin İncelenmesi”. Duzce University Journal of Science and Technology 10/5 (December 2022), 91-106. https://doi.org/10.29130/dubited.1093355.
JAMA Dündar B, Çınar Resuloğulları E, Karcı TC, Dönmez A. Cam Tozu ve Uçucu Kül Katkılı Harçların Zamana Bağlı Elektriksel Özdirenç ve Mekanik Özelliklerinin İncelenmesi. DUBİTED. 2022;10:91–106.
MLA Dündar, Behcet et al. “Cam Tozu Ve Uçucu Kül Katkılı Harçların Zamana Bağlı Elektriksel Özdirenç Ve Mekanik Özelliklerinin İncelenmesi”. Duzce University Journal of Science and Technology, vol. 10, no. 5, 2022, pp. 91-106, doi:10.29130/dubited.1093355.
Vancouver Dündar B, Çınar Resuloğulları E, Karcı TC, Dönmez A. Cam Tozu ve Uçucu Kül Katkılı Harçların Zamana Bağlı Elektriksel Özdirenç ve Mekanik Özelliklerinin İncelenmesi. DUBİTED. 2022;10(5):91-106.