Research Article
BibTex RIS Cite

Periyodik Oluklu bir Kanalda Laminer Pulsatif Akışın Isı Transferi Karakteristiğinin Sayısal Analizi

Year 2024, Volume: 12 Issue: 1, 586 - 601, 26.01.2024
https://doi.org/10.29130/dubited.1110551

Abstract

Bu çalışmada, periyodik dalgalı bir kanalda laminar pulsatif akışın hidrolik ve termal davranışları üzerindeki etkileri sayısal olarak analiz edilmiştir. Sayısal çözümler, sonlu hacim yaklaşımı ile analiz yapan FLUENT programı ile gerçekleştirilmiştir. Çalışmada, pulsatif genlik (A), Strouhal sayısı (St), Reynolds sayısı (Re) değiştirilmiş, diğer parametreler sabit tutulmuştur. Dalgalı kanalın alt ve üst yüzeyleri T=350K sıcaklığında korunmuştur. Sayısal sonuçlar, Nusselt sayısı (Nu), sürtünme faktörü (f) ve termo-hidrolik etkinlik (THE) açısından sürekli akış şartları ile karşılaştırılarak sunulmuştur. Pulsatif parametrelerin ve Reynolds sayısının kanal içindeki davranışını gözlemlemek için anlık akış ve sıcaklık dağılımları elde edilmiştir. Çalışma sonuçları, kanal içindeki akışın kanal geometrisinden, pulsatif parametrelerden ve Reynolds sayısından önemli derecede etkilendiğini göstermiştir. Artan Reynolds sayısı ve pulsatif parametreler ile hafif bir basınç düşüşü ile ısı transferinde kayda değer bir iyileşme sağlanmıştır.

References

  • T. Alam, R.P. Saini, and J.S. Saini, “Use of turbulators for heat transfer augmentation in an air duct –A review,” Renewable Energy, vol. 62, pp. 689-715, 2014.
  • Z. Li, Y. Gao, “Numerical study of turbulent flow and heat transfer in cross corrugated triangular ducts with delta-shaped baffles,” Int J Heat and Mass Transfer, vol. 108, pp. 658–670, 2017.
  • F. Menasria, M. Zedairia, and A. Moummi, “Numerical study of thermohydraulic performance of solar air heater duct equipped with novel continuous rectangular baffles with high aspect ratio,” Energy, vol. 133, pp. 593-608, 2017.
  • J.A. Modi, and M.K. Rathod, “Comparative study of heat transfer enhancement and pressure drop for fin-and-circular tube compact heat exchangers with sinusoidal wavy and elliptical curved rectangular winglet vortex generator,” Int J Heat and Mass Transfer, vol. 141, pp. 310-326, 2019.
  • G. Sureandhar, G. Srinivasan, P. Muthukumar, and S. Senthilmurugan, “Performance analysis of arc rib fin embedded in a solar air heater,” Therm Sci Eng Prog, vol. 23, no. 100891, 2021.
  • R.K. Ajeel, K. Sopian, and R. Zulkifli, “Thermal-hydraulic performance and design parameters in acurved-corrugated channel with L-shaped baffles and nanofluid,” Journal of Energy Storage, vol. 34, no. 101996, 2021.
  • M.E. Nakhchi, M. Hatami, and M. Rahmati, “Experimental investigation of performance improvement of double-pipe heat exchangers with novel perforated elliptic turbulators,” Int J Thermal Science, vol. 168, no. 107057, 2021.
  • P. Naphon, and K. Kornkumjayrit, “Numerical analysis on the fluid flow and heat transfer in the channel with V- shaped wavy lower plate,” Int Commun Heat Mass Transfer, vol. 35, pp. 839-843, 2008.
  • H.M. Deylami, N. Amanifard, M. Sanaei, and R. Kouhikamali, “Numerical investigation of heat transfer and pressure drop in a corrugated channel,” Int J Engineering Transactions A: Basics, vol. 26, no. 7, pp. 771-780, 2013.
  • S. Skullong, P. Promvonge, C. Thianpong, and M. Pimsarn, “Thermal performance in solar air heater channel with combined wavy-groove and perforated-delta wing vortex generators,” Appl Therm Eng, vol. 100, pp. 611–620, 2016.
  • N.E. Davkhar, and N.K. Deshmukh, “Review on analysis of heat transfer and fluid flow characteristics in corrugated duct,” International Journal of Research Publication and Reviews, vol. 2, no. 1, pp. 262-268, 2021.
  • A. Shahsavar, S.S. Alimohammadi, I.B. Askari, and H.M. Ali, “Numerical investigation of the effect of corrugation profile on the hydrothermal characteristics and entropy generation behavior of laminar forced convection of non-Newtonian water/CMC- CuO nanofluid flow inside a wavy channel,” Int Commun Heat Mass Transfer, vol. 121, no. 105117, 2021.
  • X. Liu, Y. Fu, J. Wang, H. Zhang, and J. Zhu, “Investigation on flow and heat transfer in rectangular cross-section sinusoidal channels,” International Journal of Thermal Sciences, vol. 176, no. 107490, 2022.
  • N. Kurtulmus, and B.Sahin, “A review of hydrodynamics and heat transfer through corrugated channels,” Int Commun Heat Mass Transf, vol. 108, no. 104307, 2019.
  • H. Zontul, H. Hamzah, N. Kurtulmuş, and B. Şahin, “Investigation of convective heat transfer and flow hydrodynamics in rectangular grooved channels,” Int Commun Heat and Mass Transfer, vol. 126, no. 105366, 2021.
  • Z. Brodnianská, and S. Kotśmíd, “Intensification of convective heat transfer in new shaped wavy channel configurations,” International Journal of Thermal Sciences, vol. 162, no. 106794, 2021.
  • S.K. Mehta, S. Pati, and L. Baranyi, “Effect of amplitude of walls on thermal and hydrodynamic characteristics of laminar flow through an asymmetric wavy channel,” Case Studies in Thermal Engineering, vol. 31, no. 101796, 2022.
  • M. Kilic, and A. Abdulvahitoğlu, “Numerical investigation of heat transfer at a rectangular channel with combined effect of nanofluids and swirling jets in a vehicle radiator,” Thermal Science, vol. 23, no. 6A, pp. 3627-3637. 2019.
  • F. Selimefendigil, and H.F. Oztop, “MHD pulsating forced convection of nanofluid over parallel plates with blocks in a channel,” International Journal of Mechanical Sciences, vol. 157–158, pp. 726–740, 2019.
  • R. Zhao, W. Li, W. Zhuge, Y. Zhang, Y. Yin, and Y. Wu, “Characterization of two-stage turbine system under steady and pulsating flow conditions,” Energy, vol. 148, pp. 407–423, 2018.
  • S.M. Jalil, “Exprimental and numerical investigation of axial heat transfer enhancement by oscillatory flows,” International Journal of Thermal Sciences, vol. 137, pp. 352-364, 2019.
  • I.A. Davletshin, A.N. Mikheev, N.I. Mikheev, and R.R. Shakirov, “Heat transfer and structure of pulsating flow behind a rib,” Int J Heat and Mass Transfer, vol. 160, no. 120173, 2020.
  • D. Duan, Y. Cheng, M. Ge, W. Bi, P. Ge, and X. Yang, “Exprimental and numerical study on heat transfer enhancement by flow-induced vibration in pulsating flow,” Applied Thermal Engineering, vol. 207, no. 118171, 2022.
  • Q. Ye, Y. Zhang, and J. Wei, “A comprehensive review of pulsating flow on heat transfer enhancement,” Applied Thermal Engineering, vol. 196, no. 117275, 2021.
  • M.H. Esfe, M. Bahiraei, A. Torabi, and M. Valadkhani, “A critical review on pulsating flow in conventional fluids and nanofluids: Thermo-hydraulic characteristics,” Int Commun Heat and Mass Transfer, vol. 120, no. 104859, 2021.
  • J. Munoz-Camara, D. Crespí-Llorens, J.P. Solano, and P. Vicente, “Baffled tubes with superimposed oscillatory flow: Experimental study of the fluid mixing and heat transfer at low net Reynolds numbers,” Experimental Thermal and Fluid Science, vol. 123, no. 110324, 2021.
  • T. Nishimura, N. Oka, Y. Yoshinaka, and K. Kunitsugu, “Influence of imposed oscillatory frequency on mass transfer enhancement of grooved channels for pulsatile flow,” Int J Heat Mass Transfer, vol. 43, no. 13, pp. 2365-2374, 2000.
  • C. Herman, and E. Kang, “Experimental visualization of temperature fields and study of heat transfer enhancement in oscillatory flow in a grooved channel,” Heat Mass Transfer, vol. 37, no. 1, pp. 87-99, 2001.
  • D.X. Jin, Y.P. Lee, and D.Y. Lee, “Effects of the pulsating flow agitation on the heat transfer in a triangular grooved channel,” Int J Heat Mass Transfer, vol. 50, no. 15–16, pp. 3062-3071, 2007.
  • D.X. Jin, Y.P. Lee, and D.Y. Lee, “Effects of the pulsating flow agitation on the heat transfer in a triangular grooved channel,” Int J Heat Mass Transfer, vol. 50, pp. 3062-3071, 2007.
  • M. Jafari, M. Farhadi, and K. Sedighi, “Pulsating flow effects on convection heat transfer in a corrugated channel: A LBM approach,” Int Commun Heat Mass Transfer, vol. 45, pp. 146-154, 2013.
  • F. Selimefendigil, and H.F. Oztop, “Forced convection and thermal predictions of pulsating nanofluid flow over a backward facing step with a corrugated bottom wall,” Int J Heat Mass Transfer, vol. 110, pp. 231-247, 2017.
  • H. Huang, Y. Bian, Y. Liu, F. Zhang, H. Arima, and Y. Ikegami, “Numerical and experimental analysis of heat transfer enhancement and pressure drop characteristics of laminar pulsatile flow in grooved channel with different groove lengths,” Appl Therm Eng, vol. 137, pp. 632–643, 2018.
  • N.F. Okechi, and S. Asghar, “Oscillatory flow in a corrugated curved channel,” European Journal of Mechanics/B Fluids, vol. 84, p. 81-92, 2020.
  • U. Akdag, S. Akcay, and D. Demiral, “Heat transfer enhancement with laminar pulsating nanofluid flow in a wavy channel,” Int Commun Heat Mass Transfer, vol. 59, pp. 17–23, 2014.
  • U. Akdag, S. Akcay, and D. Demiral, “Heat transfer enhancement with nanofluids under laminar pulsating flow in a trapezoidal-corrugated channel,” Progress in Computational Fluid Dynamics, vol. 17, no. 5, pp. 302-312, 2016.
  • U. Akdag, S. Akcay, and D. Demiral, “Heat transfer in a triangular wavy channel with CuO-water nanofluids under pulsating flow,” Thermal Science, vol. 23, no. 1, pp. 191-205, 2019.
  • J. Pan, Y. Bian, Y. Liu, F. Zhang, Y. Yang, and H. Arima, “Characteristics of flow behavior and heat transfer in the grooved channel for pulsatile flow with a reverse flow,” Int J Heat and Mass Transfer, vol. 147, no. 118932, 2020.
  • N. Kurtulmus, and B. Sahin, “Exprimental investigation of pulsating flow structures and heat transfer characteristics in sinusoidal channels,” International Journal of Mechanical Sciences, vol. 167, no. 105268, 2020.
  • V.Q. Hoang, T.T. Hoang, C.T. Dinh, and F. Plourde, “Large eddy simulation of the turbulence heat and mass transfer of pulsating flow in a V-sharp corrugated channel,” Int J Heat and Mass Transfer, vol. 166, no. 120720, 2021.
  • E. Aslan, M. Ozsaban, G. Ozçelik, and H.R. Guven, “A numerical Analysis of convection heat transfer and friction factor for oscillating corrugated channel flows,” Heat Transfer Enginnering, vol. 42, no. 3-4, pp. 181-190, 2021.
  • ANSYS Inc. ANSYS Fluent user guide & theory guide- Release 15.0, USA, 2015.
  • K. Boukhadia, H. Ameur, D. Sahel, and M. Bozit, “Effect of the perforation design on the fluid flow and heat transfer characteristics of a plate fin heat exchanger,” Int J Therm Sci, vol 126, pp. 172-180, 2018.
  • S. Akcay, “Numerical analysis of heat transfer ımprovement for pulsating flow in a periodic corrugated channel with discrete V-type winglets,” International Communications in Heat and Mass Transfer, vol. 134, no. 105991, 2022.
Year 2024, Volume: 12 Issue: 1, 586 - 601, 26.01.2024
https://doi.org/10.29130/dubited.1110551

Abstract

References

  • T. Alam, R.P. Saini, and J.S. Saini, “Use of turbulators for heat transfer augmentation in an air duct –A review,” Renewable Energy, vol. 62, pp. 689-715, 2014.
  • Z. Li, Y. Gao, “Numerical study of turbulent flow and heat transfer in cross corrugated triangular ducts with delta-shaped baffles,” Int J Heat and Mass Transfer, vol. 108, pp. 658–670, 2017.
  • F. Menasria, M. Zedairia, and A. Moummi, “Numerical study of thermohydraulic performance of solar air heater duct equipped with novel continuous rectangular baffles with high aspect ratio,” Energy, vol. 133, pp. 593-608, 2017.
  • J.A. Modi, and M.K. Rathod, “Comparative study of heat transfer enhancement and pressure drop for fin-and-circular tube compact heat exchangers with sinusoidal wavy and elliptical curved rectangular winglet vortex generator,” Int J Heat and Mass Transfer, vol. 141, pp. 310-326, 2019.
  • G. Sureandhar, G. Srinivasan, P. Muthukumar, and S. Senthilmurugan, “Performance analysis of arc rib fin embedded in a solar air heater,” Therm Sci Eng Prog, vol. 23, no. 100891, 2021.
  • R.K. Ajeel, K. Sopian, and R. Zulkifli, “Thermal-hydraulic performance and design parameters in acurved-corrugated channel with L-shaped baffles and nanofluid,” Journal of Energy Storage, vol. 34, no. 101996, 2021.
  • M.E. Nakhchi, M. Hatami, and M. Rahmati, “Experimental investigation of performance improvement of double-pipe heat exchangers with novel perforated elliptic turbulators,” Int J Thermal Science, vol. 168, no. 107057, 2021.
  • P. Naphon, and K. Kornkumjayrit, “Numerical analysis on the fluid flow and heat transfer in the channel with V- shaped wavy lower plate,” Int Commun Heat Mass Transfer, vol. 35, pp. 839-843, 2008.
  • H.M. Deylami, N. Amanifard, M. Sanaei, and R. Kouhikamali, “Numerical investigation of heat transfer and pressure drop in a corrugated channel,” Int J Engineering Transactions A: Basics, vol. 26, no. 7, pp. 771-780, 2013.
  • S. Skullong, P. Promvonge, C. Thianpong, and M. Pimsarn, “Thermal performance in solar air heater channel with combined wavy-groove and perforated-delta wing vortex generators,” Appl Therm Eng, vol. 100, pp. 611–620, 2016.
  • N.E. Davkhar, and N.K. Deshmukh, “Review on analysis of heat transfer and fluid flow characteristics in corrugated duct,” International Journal of Research Publication and Reviews, vol. 2, no. 1, pp. 262-268, 2021.
  • A. Shahsavar, S.S. Alimohammadi, I.B. Askari, and H.M. Ali, “Numerical investigation of the effect of corrugation profile on the hydrothermal characteristics and entropy generation behavior of laminar forced convection of non-Newtonian water/CMC- CuO nanofluid flow inside a wavy channel,” Int Commun Heat Mass Transfer, vol. 121, no. 105117, 2021.
  • X. Liu, Y. Fu, J. Wang, H. Zhang, and J. Zhu, “Investigation on flow and heat transfer in rectangular cross-section sinusoidal channels,” International Journal of Thermal Sciences, vol. 176, no. 107490, 2022.
  • N. Kurtulmus, and B.Sahin, “A review of hydrodynamics and heat transfer through corrugated channels,” Int Commun Heat Mass Transf, vol. 108, no. 104307, 2019.
  • H. Zontul, H. Hamzah, N. Kurtulmuş, and B. Şahin, “Investigation of convective heat transfer and flow hydrodynamics in rectangular grooved channels,” Int Commun Heat and Mass Transfer, vol. 126, no. 105366, 2021.
  • Z. Brodnianská, and S. Kotśmíd, “Intensification of convective heat transfer in new shaped wavy channel configurations,” International Journal of Thermal Sciences, vol. 162, no. 106794, 2021.
  • S.K. Mehta, S. Pati, and L. Baranyi, “Effect of amplitude of walls on thermal and hydrodynamic characteristics of laminar flow through an asymmetric wavy channel,” Case Studies in Thermal Engineering, vol. 31, no. 101796, 2022.
  • M. Kilic, and A. Abdulvahitoğlu, “Numerical investigation of heat transfer at a rectangular channel with combined effect of nanofluids and swirling jets in a vehicle radiator,” Thermal Science, vol. 23, no. 6A, pp. 3627-3637. 2019.
  • F. Selimefendigil, and H.F. Oztop, “MHD pulsating forced convection of nanofluid over parallel plates with blocks in a channel,” International Journal of Mechanical Sciences, vol. 157–158, pp. 726–740, 2019.
  • R. Zhao, W. Li, W. Zhuge, Y. Zhang, Y. Yin, and Y. Wu, “Characterization of two-stage turbine system under steady and pulsating flow conditions,” Energy, vol. 148, pp. 407–423, 2018.
  • S.M. Jalil, “Exprimental and numerical investigation of axial heat transfer enhancement by oscillatory flows,” International Journal of Thermal Sciences, vol. 137, pp. 352-364, 2019.
  • I.A. Davletshin, A.N. Mikheev, N.I. Mikheev, and R.R. Shakirov, “Heat transfer and structure of pulsating flow behind a rib,” Int J Heat and Mass Transfer, vol. 160, no. 120173, 2020.
  • D. Duan, Y. Cheng, M. Ge, W. Bi, P. Ge, and X. Yang, “Exprimental and numerical study on heat transfer enhancement by flow-induced vibration in pulsating flow,” Applied Thermal Engineering, vol. 207, no. 118171, 2022.
  • Q. Ye, Y. Zhang, and J. Wei, “A comprehensive review of pulsating flow on heat transfer enhancement,” Applied Thermal Engineering, vol. 196, no. 117275, 2021.
  • M.H. Esfe, M. Bahiraei, A. Torabi, and M. Valadkhani, “A critical review on pulsating flow in conventional fluids and nanofluids: Thermo-hydraulic characteristics,” Int Commun Heat and Mass Transfer, vol. 120, no. 104859, 2021.
  • J. Munoz-Camara, D. Crespí-Llorens, J.P. Solano, and P. Vicente, “Baffled tubes with superimposed oscillatory flow: Experimental study of the fluid mixing and heat transfer at low net Reynolds numbers,” Experimental Thermal and Fluid Science, vol. 123, no. 110324, 2021.
  • T. Nishimura, N. Oka, Y. Yoshinaka, and K. Kunitsugu, “Influence of imposed oscillatory frequency on mass transfer enhancement of grooved channels for pulsatile flow,” Int J Heat Mass Transfer, vol. 43, no. 13, pp. 2365-2374, 2000.
  • C. Herman, and E. Kang, “Experimental visualization of temperature fields and study of heat transfer enhancement in oscillatory flow in a grooved channel,” Heat Mass Transfer, vol. 37, no. 1, pp. 87-99, 2001.
  • D.X. Jin, Y.P. Lee, and D.Y. Lee, “Effects of the pulsating flow agitation on the heat transfer in a triangular grooved channel,” Int J Heat Mass Transfer, vol. 50, no. 15–16, pp. 3062-3071, 2007.
  • D.X. Jin, Y.P. Lee, and D.Y. Lee, “Effects of the pulsating flow agitation on the heat transfer in a triangular grooved channel,” Int J Heat Mass Transfer, vol. 50, pp. 3062-3071, 2007.
  • M. Jafari, M. Farhadi, and K. Sedighi, “Pulsating flow effects on convection heat transfer in a corrugated channel: A LBM approach,” Int Commun Heat Mass Transfer, vol. 45, pp. 146-154, 2013.
  • F. Selimefendigil, and H.F. Oztop, “Forced convection and thermal predictions of pulsating nanofluid flow over a backward facing step with a corrugated bottom wall,” Int J Heat Mass Transfer, vol. 110, pp. 231-247, 2017.
  • H. Huang, Y. Bian, Y. Liu, F. Zhang, H. Arima, and Y. Ikegami, “Numerical and experimental analysis of heat transfer enhancement and pressure drop characteristics of laminar pulsatile flow in grooved channel with different groove lengths,” Appl Therm Eng, vol. 137, pp. 632–643, 2018.
  • N.F. Okechi, and S. Asghar, “Oscillatory flow in a corrugated curved channel,” European Journal of Mechanics/B Fluids, vol. 84, p. 81-92, 2020.
  • U. Akdag, S. Akcay, and D. Demiral, “Heat transfer enhancement with laminar pulsating nanofluid flow in a wavy channel,” Int Commun Heat Mass Transfer, vol. 59, pp. 17–23, 2014.
  • U. Akdag, S. Akcay, and D. Demiral, “Heat transfer enhancement with nanofluids under laminar pulsating flow in a trapezoidal-corrugated channel,” Progress in Computational Fluid Dynamics, vol. 17, no. 5, pp. 302-312, 2016.
  • U. Akdag, S. Akcay, and D. Demiral, “Heat transfer in a triangular wavy channel with CuO-water nanofluids under pulsating flow,” Thermal Science, vol. 23, no. 1, pp. 191-205, 2019.
  • J. Pan, Y. Bian, Y. Liu, F. Zhang, Y. Yang, and H. Arima, “Characteristics of flow behavior and heat transfer in the grooved channel for pulsatile flow with a reverse flow,” Int J Heat and Mass Transfer, vol. 147, no. 118932, 2020.
  • N. Kurtulmus, and B. Sahin, “Exprimental investigation of pulsating flow structures and heat transfer characteristics in sinusoidal channels,” International Journal of Mechanical Sciences, vol. 167, no. 105268, 2020.
  • V.Q. Hoang, T.T. Hoang, C.T. Dinh, and F. Plourde, “Large eddy simulation of the turbulence heat and mass transfer of pulsating flow in a V-sharp corrugated channel,” Int J Heat and Mass Transfer, vol. 166, no. 120720, 2021.
  • E. Aslan, M. Ozsaban, G. Ozçelik, and H.R. Guven, “A numerical Analysis of convection heat transfer and friction factor for oscillating corrugated channel flows,” Heat Transfer Enginnering, vol. 42, no. 3-4, pp. 181-190, 2021.
  • ANSYS Inc. ANSYS Fluent user guide & theory guide- Release 15.0, USA, 2015.
  • K. Boukhadia, H. Ameur, D. Sahel, and M. Bozit, “Effect of the perforation design on the fluid flow and heat transfer characteristics of a plate fin heat exchanger,” Int J Therm Sci, vol 126, pp. 172-180, 2018.
  • S. Akcay, “Numerical analysis of heat transfer ımprovement for pulsating flow in a periodic corrugated channel with discrete V-type winglets,” International Communications in Heat and Mass Transfer, vol. 134, no. 105991, 2022.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Selma Akçay 0000-0003-2654-0702

Publication Date January 26, 2024
Published in Issue Year 2024 Volume: 12 Issue: 1

Cite

APA Akçay, S. (2024). Periyodik Oluklu bir Kanalda Laminer Pulsatif Akışın Isı Transferi Karakteristiğinin Sayısal Analizi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 12(1), 586-601. https://doi.org/10.29130/dubited.1110551
AMA Akçay S. Periyodik Oluklu bir Kanalda Laminer Pulsatif Akışın Isı Transferi Karakteristiğinin Sayısal Analizi. DUBİTED. January 2024;12(1):586-601. doi:10.29130/dubited.1110551
Chicago Akçay, Selma. “Periyodik Oluklu Bir Kanalda Laminer Pulsatif Akışın Isı Transferi Karakteristiğinin Sayısal Analizi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 12, no. 1 (January 2024): 586-601. https://doi.org/10.29130/dubited.1110551.
EndNote Akçay S (January 1, 2024) Periyodik Oluklu bir Kanalda Laminer Pulsatif Akışın Isı Transferi Karakteristiğinin Sayısal Analizi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 12 1 586–601.
IEEE S. Akçay, “Periyodik Oluklu bir Kanalda Laminer Pulsatif Akışın Isı Transferi Karakteristiğinin Sayısal Analizi”, DUBİTED, vol. 12, no. 1, pp. 586–601, 2024, doi: 10.29130/dubited.1110551.
ISNAD Akçay, Selma. “Periyodik Oluklu Bir Kanalda Laminer Pulsatif Akışın Isı Transferi Karakteristiğinin Sayısal Analizi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 12/1 (January 2024), 586-601. https://doi.org/10.29130/dubited.1110551.
JAMA Akçay S. Periyodik Oluklu bir Kanalda Laminer Pulsatif Akışın Isı Transferi Karakteristiğinin Sayısal Analizi. DUBİTED. 2024;12:586–601.
MLA Akçay, Selma. “Periyodik Oluklu Bir Kanalda Laminer Pulsatif Akışın Isı Transferi Karakteristiğinin Sayısal Analizi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 12, no. 1, 2024, pp. 586-01, doi:10.29130/dubited.1110551.
Vancouver Akçay S. Periyodik Oluklu bir Kanalda Laminer Pulsatif Akışın Isı Transferi Karakteristiğinin Sayısal Analizi. DUBİTED. 2024;12(1):586-601.