Research Article
BibTex RIS Cite

Su Bazlı Karışmayan Akışkan Çiftleriyle Yüklü Atımlı Isı Borularının Termo-Akış Analizi

Year 2024, Volume: 12 Issue: 1, 63 - 80, 26.01.2024
https://doi.org/10.29130/dubited.1115581

Abstract

Birbiriyle karışmayan akışkanlar, her bir saf bileşenin sebep olabileceği termo-hidrodinamik farklılık nedeniyle, atımlı ısı boruları (PHP’ler) için çalışma esnekliği sağlar. Bu kapsamda, bu çalışma su bazlı karışmayan akışkan çiftleri ile yüklenmiş üniform olmayan atımlı ısı borularının termo-akışkan analizine odaklanmaktadır. Araştırma parametreleri; 0º ve 90º eğim açıları (IA) aracılığıyla yer çekimi etkisini ve su (W) – hekzan (H) ve su (W) – pentan (P) olmak üzere iki farklı su bazlı karışmayan ikili akışkanlar aracılığıyla akışkan çifti etkisini kapsamaktadır. Hacimsel karışım oranları; W:H=1:1, 1:4, 4:1, 1:0, 0:1 ve W:P=1:1, 1:4, 4:1, 1:0, 0:1’dir ve üniform olmayan düz plaka tipi atımlı ısı borusu (FP-CLPHP) alternatif sıralı paralel kanallara sahiptir. Deneyler %40 dolum oranında (FR=40%) yapılmıştır ve akış olayları görüntülenmiştir. Bazı sonuçlar şu şekildedir: düşey konumda, su-pentan ikili akışkanlarına sahip FP-CLPHP’ler, saf akışkanlı olanlara kıyasla daha iyi ısıl performans göstermiştir. Özellikle, W:P=1:1’in ısı transfer karakteristikleri bütün saf ve ikili akışkanlar arasında en iyidir. Diğer taraftan, üniform olmayan tasarım ve uygun termo-fiziksel özelliklerin birleşiminin bir sonucu olarak, saf pentan, saf hekzan veya W:P=1:4 ikili akışkanıyla yüklü FP-CLPHP’ler yer çekimi kuvvetinden bağımsız çalışabilir.

Project Number

217M341

References

  • [1] H. Akachi, “Structure of a heat pipe,” U.S. Patent 4 921 041, May, 1, 1990.
  • [2] D. Mangini, M. Mameli, A. Georgoulas, L. Araneo, S. Filippeschi and M. Marengo, “A pulsating heat pipe for space applications: Ground and microgravity experiments,” International Journal of Thermal Science, vol. 95, pp. 53-63, 2015.
  • [3] V. Ayel, L. Araneo, A. Scalambra, M. Mameli, C. Romestant, A. Piteau, M. Marengo, S. Filippeschi, and Y. Bertin, ”Experimental study of a closed loop flat plate pulsating heat pipe under a varying gravity force,” International Journal of Thermal Science, vol. 96, pp. 23–34, 2015.
  • [4] L. Lv, J. Li, and G. Zhou, “A robust pulsating heat pipe cooler for integrated high power LED chips,” Heat and Mass Transfer, vol. 53, pp. 3305–3313, 2017.
  • [5] F. Xie, X. Li, P. Qian, Z. Huang and M. Liu, ”Effects of geometry and multisource heat input on flow and heat transfer in single close-loop pulsating heat pipe,” Applied Thermal Engineering, vol. 168, Art. no. 114856, 2020.
  • [6] M. A. Nazari, M. H. Ahmadi, R. Ghasempour, M. B. Shafii, O. Mahian, S. Kalogirou and S. Wongwises, ”A review on pulsating heat pipes: From solar to cryogenic applications,” Applied Energy, vol. 222, pp. 475-484, 2018.
  • [7] Y. Lipei, Z. Ping, X. Hui, M. Wei and S. Jiang, “Visualization of Thermo-Hydrodynamic Behavior in Flat-Plate Pulsating Heat Pipe with HFE-347,” Journal of Thermal science, vol. 30, pp. 926-938, 2021.
  • [8] B. Markal, O. Aydin and M. Avci, “Prediction of heat transfer coefficient in saturated flow boiling heat transfer in parallel rectangular microchannel heat sinks: An experimental study,” Heat Transfer Engineering, vol. 38, pp. 1415-1428, 2017.
  • [9] B. Markal, A. Candan, O. Aydin and M. Avci, “Experimental investigation of flow boiling in single minichannels with low mass velocities,” International Communications in Heat and Mass Transfer, vol. 98, pp. 22-30, 2018.
  • [10] B. Markal, O. Aydin and M. Avci, “Exergy analysis of a counter-flow Ranque-Hilsch vortex tube having different helical vortex generators,” International Journal of Exergy, vol. 10, pp. 228-238, 2012.
  • [11] B. Markal and O. Aydin, “Experimental investigation of coaxial imping air jets,” Applied Thermal Engineering, vol. 141 pp. 1120-1130, 2018.
  • [12] B. Markal, “The effect of total flowrate on the cooling performance of swirling coaxial impinging jets,” Heat and Mass Transfer, vol. 55, pp. 3275-3288, 2019.
  • [13] K. H. Chien, Y. T. Lin, Y. R. Chen, K. S. Yang, and C. C. Wang, “A novel design of pulsating heat pipe with fewer turns applicable to all orientations,” International Journal of Heat and Mass Transfer, vol. 55, pp. 5722–5728, 2012.
  • [14] C. Y. Tseng, K. S. Yang, K. H. Chien, M. S. Jeng and C. C. Wang, “Investigation of the performance of pulsating heat pipe subject to uniform/alternating tube diameters,” Experimental Thermal and Fluid Science, vol. 54, pp. 85–92, 2014.
  • [15] G. H. Kwon, and S. J. Kim, “Experimental investigation on the thermal performance of a micro pulsating heat pipe with a dual-diameter channel,” International Journal of Heat and Mass Transfer, vol. 89, pp. 817–828, 2015.
  • [16] D. S. Jang, J. S. Lee, J. H. Ahn, D. Kim and Y. Kim, “Flow patterns and heat transfer characteristics of flat plate pulsating heat pipes with various asymmetric and aspect ratios of the channels,” Applied Thermal Engineering, vol. 114, pp. 211–220, 2017.
  • [17] L. Aref, R. Fallahzdeh, S. R. Shabanian and M. Hosseinzadeh, “A novel dual-diameter closed-loop pulsating heat pipe for a flat plate solar collector,” Energy, vol. 230, Art. no.120751.
  • [18] S. Shi, X. Cui, H. Han, J. Weng, and Z. Li, ”A study of the heat transfer performance of a pulsating heat pipe with ethanol-based mixtures,” Applied Thermal Engineering, vol. 102, pp. 1219–1227, 2016.
  • [19] X. Cui, Z. Qiu, J. Weng, and Z. Li, “ Heat transfer performance of closed loop pulsating heat pipes with methanol-based binary mixtures,” Experimental Thermal Fluid Science, vol. 76, pp. 253–263, 2016
  • [20] R. Xu, C. Zhang, H. Chen, Q. Wu, and R. Wang, “Heat transfer performance of pulsating heat pipe with zeotropic immiscible binary mixtures,” International Journal of Heat and Mass Transfer, vol. 137, pp. 31–41, 2019.
  • [21] K. Bao, X. Wang, Y. Fang, X. Ji, X. Han and G. Chen, “Effects of the surfactant solution on the performance of the pulsating heat pipe,” Applied Thermal Engineering, vol. 178, Art. no. 115678, 2020.
  • [22] Y. Zhou, H. Yang, L. Liu, M. Zhang, Y. Wang, Y. Zhang and B. Zhou, “Enhancement of start-up and thermal performance in pulsating heat pipe with GO/water nanofluid,” Powder Technology, vol. 384, pp. 414-422, 2021.
  • [23] B. Markal, and R. Varol, “Thermal investigation and flow pattern analysis of a closed-loop pulsating heat pipe with binary mixtures,” Journal of the Brazilian Society of Mechanical Science and Engineering, vol. 42, 2020, Art. no. 549.
  • [24] B. Markal, and R. Varol, ”Experimental investigation and force analysis of flat-plate type pulsating heat pipes having ternary mixtures,” International Communications in Heat and Mass Transfer, vol. 121, 2021, Art. no. 105084.
  • [25] B. Markal and R. Varol, “Investigation of the effects of miscible and immiscible binary fluids on thermal performance of pulsating heat pipes,” Heat and Mass Transfer, vol. 57, pp. 1527-1542, 2021.
  • [26] K. S. Yang, Y. C. Cheng, M. C. Liu, and J. C. Shyu, “Micro pulsating heat pipes with alternate microchannel widths,” Applied Thermal Engineering, vol. 83, pp. 131–138, 2015.
  • [27] G. Spinato, N. Borhani, and J. R. Thome, “Operational regimes in a closed loop pulsating heat pipe,” International Journal of Thermal Sciences, vol. 102, pp. 78–88, 2016.
  • [28] D. A. Reay, P. A. Kew and R. J. McGlen, “Appendix 1 Working Fluid Properties”, in Heat Pipes: theory, desing and applications, 6th ed., Oxford, United Kingdom: Butterworth-Heinemann, Elsevier, 2014, pp. 229.
  • [29] J. F. Messerly, G. B. Guthrie, S. S. Todd and H. L. Finke, “Low-temperature thermal data for n-pentane, n-heptadecane, and n-octadecane. Revised thermodynamic functions for the n-alkanes, C5-C18,” Journal of Chemical and Engineering Data, vol. 12, pp. 338–346, 1967.
  • [30] NIST Chemistry WebBook, Thermophysical properties of fluid systems, Natinal Institude of Standards and Technology U.S. Department of Commerce, 2021. [Online]. Available: https://webbook.nist.gov/chemistry/fluid/. Accessed: August 20, 2021.
  • [31] Y. A. Cengel and M. A. Boles, “Thermodynamic Property Relations”, in Thermodynamics: an engineering approach, 8th ed., New York, USA: McGraw-Hill Education, 2015, pp. 662–664.
  • [32] H. Han, X. Cui, Y. Zhu, T. Xu, Y. Sui and S. Sun, “Experimental study on a closed-loop pulsating heat pipe (CLPHP) charged with water-based binary zeotropes and the corresponding pure fluids,” Energy, vol. 109, pp. 724–736, 2016.
  • [33] Y. Zhu, X. Cui, H. Han, and S. Sun, “The study on the difference of the start-up and heat-transfer performance of the pulsating heat pipe with water-acetone mixtures,” International Journal of Heat and Mass Transfer, vol. 77, pp. 834–842, 2014.

Thermo-Fluidic Analysis of Pulsating Heat Pipes Charged with Water-Based Immiscible Fluid Pairs

Year 2024, Volume: 12 Issue: 1, 63 - 80, 26.01.2024
https://doi.org/10.29130/dubited.1115581

Abstract

Immiscible fluids may provide operational flexibility for pulsating heat pipes (PHPs) due to thermo-hydrodynamic diversity lead by each pure component. In this regard, present paper focuses on the thermo-fluidic analysis of non-uniform pulsating heat pipes charged with water-based immiscible fluid pairs. Research parameters cover gravity effect via the inclination angles (IA) of 0o and 90o, and fluid pair effect via two different water-based immiscible binary fluids as Water (W) – Hexane (H), and Water (W) – Pentane (P). The volumetric mixing ratios are W:H=1:1, 1:4, 4:1, 1:0, 0:1, and W:P=1:1, 1:4, 4:1, 1:0, 0:1; and the non-uniform flat plate type pulsating heat pipe (FP-CLPHP) has alternating-sequence parallel channels. The experiments are performed at the filling ratio of 40% (FR=40%), and flow phenomena is visualized. As some conclusions; at vertical orientation, the FP-CLPHPs having binary fluids of water-pentane show better thermal performance compared to the pure counterparts. Especially, the heat transfer characteristics of W:P=1:1 are the best ones among all the pure and binary fluids. On the other hand, as a conclusion of combination of non-uniform design and suitable thermophysical properties, the FP-CLPHPs charged with pure pentane, pure hexane or binary fluid of W:P=1:4 can work independent from gravitational force.

Supporting Institution

The Scientific and Technological Research Council of Turkey (TUBITAK)

Project Number

217M341

Thanks

The Scientific and Technological Research Council of Turkey (TUBITAK) supported this study with the project number of 217M341.

References

  • [1] H. Akachi, “Structure of a heat pipe,” U.S. Patent 4 921 041, May, 1, 1990.
  • [2] D. Mangini, M. Mameli, A. Georgoulas, L. Araneo, S. Filippeschi and M. Marengo, “A pulsating heat pipe for space applications: Ground and microgravity experiments,” International Journal of Thermal Science, vol. 95, pp. 53-63, 2015.
  • [3] V. Ayel, L. Araneo, A. Scalambra, M. Mameli, C. Romestant, A. Piteau, M. Marengo, S. Filippeschi, and Y. Bertin, ”Experimental study of a closed loop flat plate pulsating heat pipe under a varying gravity force,” International Journal of Thermal Science, vol. 96, pp. 23–34, 2015.
  • [4] L. Lv, J. Li, and G. Zhou, “A robust pulsating heat pipe cooler for integrated high power LED chips,” Heat and Mass Transfer, vol. 53, pp. 3305–3313, 2017.
  • [5] F. Xie, X. Li, P. Qian, Z. Huang and M. Liu, ”Effects of geometry and multisource heat input on flow and heat transfer in single close-loop pulsating heat pipe,” Applied Thermal Engineering, vol. 168, Art. no. 114856, 2020.
  • [6] M. A. Nazari, M. H. Ahmadi, R. Ghasempour, M. B. Shafii, O. Mahian, S. Kalogirou and S. Wongwises, ”A review on pulsating heat pipes: From solar to cryogenic applications,” Applied Energy, vol. 222, pp. 475-484, 2018.
  • [7] Y. Lipei, Z. Ping, X. Hui, M. Wei and S. Jiang, “Visualization of Thermo-Hydrodynamic Behavior in Flat-Plate Pulsating Heat Pipe with HFE-347,” Journal of Thermal science, vol. 30, pp. 926-938, 2021.
  • [8] B. Markal, O. Aydin and M. Avci, “Prediction of heat transfer coefficient in saturated flow boiling heat transfer in parallel rectangular microchannel heat sinks: An experimental study,” Heat Transfer Engineering, vol. 38, pp. 1415-1428, 2017.
  • [9] B. Markal, A. Candan, O. Aydin and M. Avci, “Experimental investigation of flow boiling in single minichannels with low mass velocities,” International Communications in Heat and Mass Transfer, vol. 98, pp. 22-30, 2018.
  • [10] B. Markal, O. Aydin and M. Avci, “Exergy analysis of a counter-flow Ranque-Hilsch vortex tube having different helical vortex generators,” International Journal of Exergy, vol. 10, pp. 228-238, 2012.
  • [11] B. Markal and O. Aydin, “Experimental investigation of coaxial imping air jets,” Applied Thermal Engineering, vol. 141 pp. 1120-1130, 2018.
  • [12] B. Markal, “The effect of total flowrate on the cooling performance of swirling coaxial impinging jets,” Heat and Mass Transfer, vol. 55, pp. 3275-3288, 2019.
  • [13] K. H. Chien, Y. T. Lin, Y. R. Chen, K. S. Yang, and C. C. Wang, “A novel design of pulsating heat pipe with fewer turns applicable to all orientations,” International Journal of Heat and Mass Transfer, vol. 55, pp. 5722–5728, 2012.
  • [14] C. Y. Tseng, K. S. Yang, K. H. Chien, M. S. Jeng and C. C. Wang, “Investigation of the performance of pulsating heat pipe subject to uniform/alternating tube diameters,” Experimental Thermal and Fluid Science, vol. 54, pp. 85–92, 2014.
  • [15] G. H. Kwon, and S. J. Kim, “Experimental investigation on the thermal performance of a micro pulsating heat pipe with a dual-diameter channel,” International Journal of Heat and Mass Transfer, vol. 89, pp. 817–828, 2015.
  • [16] D. S. Jang, J. S. Lee, J. H. Ahn, D. Kim and Y. Kim, “Flow patterns and heat transfer characteristics of flat plate pulsating heat pipes with various asymmetric and aspect ratios of the channels,” Applied Thermal Engineering, vol. 114, pp. 211–220, 2017.
  • [17] L. Aref, R. Fallahzdeh, S. R. Shabanian and M. Hosseinzadeh, “A novel dual-diameter closed-loop pulsating heat pipe for a flat plate solar collector,” Energy, vol. 230, Art. no.120751.
  • [18] S. Shi, X. Cui, H. Han, J. Weng, and Z. Li, ”A study of the heat transfer performance of a pulsating heat pipe with ethanol-based mixtures,” Applied Thermal Engineering, vol. 102, pp. 1219–1227, 2016.
  • [19] X. Cui, Z. Qiu, J. Weng, and Z. Li, “ Heat transfer performance of closed loop pulsating heat pipes with methanol-based binary mixtures,” Experimental Thermal Fluid Science, vol. 76, pp. 253–263, 2016
  • [20] R. Xu, C. Zhang, H. Chen, Q. Wu, and R. Wang, “Heat transfer performance of pulsating heat pipe with zeotropic immiscible binary mixtures,” International Journal of Heat and Mass Transfer, vol. 137, pp. 31–41, 2019.
  • [21] K. Bao, X. Wang, Y. Fang, X. Ji, X. Han and G. Chen, “Effects of the surfactant solution on the performance of the pulsating heat pipe,” Applied Thermal Engineering, vol. 178, Art. no. 115678, 2020.
  • [22] Y. Zhou, H. Yang, L. Liu, M. Zhang, Y. Wang, Y. Zhang and B. Zhou, “Enhancement of start-up and thermal performance in pulsating heat pipe with GO/water nanofluid,” Powder Technology, vol. 384, pp. 414-422, 2021.
  • [23] B. Markal, and R. Varol, “Thermal investigation and flow pattern analysis of a closed-loop pulsating heat pipe with binary mixtures,” Journal of the Brazilian Society of Mechanical Science and Engineering, vol. 42, 2020, Art. no. 549.
  • [24] B. Markal, and R. Varol, ”Experimental investigation and force analysis of flat-plate type pulsating heat pipes having ternary mixtures,” International Communications in Heat and Mass Transfer, vol. 121, 2021, Art. no. 105084.
  • [25] B. Markal and R. Varol, “Investigation of the effects of miscible and immiscible binary fluids on thermal performance of pulsating heat pipes,” Heat and Mass Transfer, vol. 57, pp. 1527-1542, 2021.
  • [26] K. S. Yang, Y. C. Cheng, M. C. Liu, and J. C. Shyu, “Micro pulsating heat pipes with alternate microchannel widths,” Applied Thermal Engineering, vol. 83, pp. 131–138, 2015.
  • [27] G. Spinato, N. Borhani, and J. R. Thome, “Operational regimes in a closed loop pulsating heat pipe,” International Journal of Thermal Sciences, vol. 102, pp. 78–88, 2016.
  • [28] D. A. Reay, P. A. Kew and R. J. McGlen, “Appendix 1 Working Fluid Properties”, in Heat Pipes: theory, desing and applications, 6th ed., Oxford, United Kingdom: Butterworth-Heinemann, Elsevier, 2014, pp. 229.
  • [29] J. F. Messerly, G. B. Guthrie, S. S. Todd and H. L. Finke, “Low-temperature thermal data for n-pentane, n-heptadecane, and n-octadecane. Revised thermodynamic functions for the n-alkanes, C5-C18,” Journal of Chemical and Engineering Data, vol. 12, pp. 338–346, 1967.
  • [30] NIST Chemistry WebBook, Thermophysical properties of fluid systems, Natinal Institude of Standards and Technology U.S. Department of Commerce, 2021. [Online]. Available: https://webbook.nist.gov/chemistry/fluid/. Accessed: August 20, 2021.
  • [31] Y. A. Cengel and M. A. Boles, “Thermodynamic Property Relations”, in Thermodynamics: an engineering approach, 8th ed., New York, USA: McGraw-Hill Education, 2015, pp. 662–664.
  • [32] H. Han, X. Cui, Y. Zhu, T. Xu, Y. Sui and S. Sun, “Experimental study on a closed-loop pulsating heat pipe (CLPHP) charged with water-based binary zeotropes and the corresponding pure fluids,” Energy, vol. 109, pp. 724–736, 2016.
  • [33] Y. Zhu, X. Cui, H. Han, and S. Sun, “The study on the difference of the start-up and heat-transfer performance of the pulsating heat pipe with water-acetone mixtures,” International Journal of Heat and Mass Transfer, vol. 77, pp. 834–842, 2014.
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Burak Markal 0000-0001-6356-3503

Ramazan Varol 0000-0002-5950-7629

Project Number 217M341
Publication Date January 26, 2024
Published in Issue Year 2024 Volume: 12 Issue: 1

Cite

APA Markal, B., & Varol, R. (2024). Thermo-Fluidic Analysis of Pulsating Heat Pipes Charged with Water-Based Immiscible Fluid Pairs. Duzce University Journal of Science and Technology, 12(1), 63-80. https://doi.org/10.29130/dubited.1115581
AMA Markal B, Varol R. Thermo-Fluidic Analysis of Pulsating Heat Pipes Charged with Water-Based Immiscible Fluid Pairs. DUBİTED. January 2024;12(1):63-80. doi:10.29130/dubited.1115581
Chicago Markal, Burak, and Ramazan Varol. “Thermo-Fluidic Analysis of Pulsating Heat Pipes Charged With Water-Based Immiscible Fluid Pairs”. Duzce University Journal of Science and Technology 12, no. 1 (January 2024): 63-80. https://doi.org/10.29130/dubited.1115581.
EndNote Markal B, Varol R (January 1, 2024) Thermo-Fluidic Analysis of Pulsating Heat Pipes Charged with Water-Based Immiscible Fluid Pairs. Duzce University Journal of Science and Technology 12 1 63–80.
IEEE B. Markal and R. Varol, “Thermo-Fluidic Analysis of Pulsating Heat Pipes Charged with Water-Based Immiscible Fluid Pairs”, DUBİTED, vol. 12, no. 1, pp. 63–80, 2024, doi: 10.29130/dubited.1115581.
ISNAD Markal, Burak - Varol, Ramazan. “Thermo-Fluidic Analysis of Pulsating Heat Pipes Charged With Water-Based Immiscible Fluid Pairs”. Duzce University Journal of Science and Technology 12/1 (January 2024), 63-80. https://doi.org/10.29130/dubited.1115581.
JAMA Markal B, Varol R. Thermo-Fluidic Analysis of Pulsating Heat Pipes Charged with Water-Based Immiscible Fluid Pairs. DUBİTED. 2024;12:63–80.
MLA Markal, Burak and Ramazan Varol. “Thermo-Fluidic Analysis of Pulsating Heat Pipes Charged With Water-Based Immiscible Fluid Pairs”. Duzce University Journal of Science and Technology, vol. 12, no. 1, 2024, pp. 63-80, doi:10.29130/dubited.1115581.
Vancouver Markal B, Varol R. Thermo-Fluidic Analysis of Pulsating Heat Pipes Charged with Water-Based Immiscible Fluid Pairs. DUBİTED. 2024;12(1):63-80.