Review
BibTex RIS Cite

Innovative Approaches in Spent Activated Carbon Regeneration

Year 2024, Volume: 12 Issue: 1, 279 - 295, 26.01.2024
https://doi.org/10.29130/dubited.1178175

Abstract

Granular activated carbon (GAC) is widely used in adsorption processes to remove pollutants from gas and liquid streams. The reusability of carbon-based adsorbents enables the adsorption process to become widespread technically and economically. However, its application is limited due to the high costs and environmental problems associated with post-saturation disposal. In order to prolong the service life of the saturated GAK, different regeneration techniques have been identified that allow long adsorption cycles, have low cost, have minimum carbon loss and minimize environmental impact. These techniques can be accomplished in two distinct ways: regeneration based solely on the desorption of pollutants adsorbed on activated carbon or based on the decomposition of these pollutants. Generally, regeneration methods are classified as thermal, chemical and microbiological. Newly developed regeneration methods are more preferred in terms of energy efficiency, selectivity, low cost and environmental compatibility. In addition, regeneration of depleted activated carbon can be done in situ with newly developed regeneration methods. This provides a significant advantage. In this study, the literature on the regeneration of saturated GAKs has been reviewed and promising techniques have been highlighted.

References

  • [1] J. Pallarés, A. González-Cencerrado, and I. Arauzo, “Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam,” Biomass and Bioenergy, vol. 115, pp. 64–73, Aug. 2018, doi: 10.1016/J.BIOMBIOE.2018.04.015.
  • [2] B. Ferrández-Gómez, R. Ruiz-Rosas, S. Beaumont, D. Cazorla-Amorós, and E. Morallón, “Electrochemical regeneration of spent activated carbon from drinking water treatment plant at different scale reactors,” Chemosphere, vol. 264, p. 128399, Feb. 2021, doi: 10.1016/j.chemosphere.2020.128399.
  • [3] S. K. Smolin, O. V. Zabneva, and N. A. Klymenko, “Chemical Regeneration of Biological Activated Carbon in Removing Nitrophenol,” J. Water Chem. Technol., vol. 40, no. 3, pp. 126–130, 2018, doi: 10.3103/s1063455x18030025.
  • [4] A. V. Baskar et al., “Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review,” Sci. Total Environ., vol. 822, p. 153555, 2022, doi: 10.1016/j.scitotenv.2022.153555.
  • [5] E. O. Fagbohun et al., “Physicochemical regeneration of industrial spent activated carbons using a green activating agent and their adsorption for methyl orange,” Surfaces and Interfaces, vol. 29, p. 101696, Apr. 2022, doi: 10.1016/J.SURFIN.2021.101696.
  • [6] E. Gagliano, P. P. Falciglia, Y. Zaker, T. Karanfil, and P. Roccaro, “Microwave regeneration of granular activated carbon saturated with PFAS,” Water Res., vol. 198, p. 117121, Jun. 2021, doi: 10.1016/J.WATRES.2021.117121.
  • [7] F. Salvador, N. Martin-Sanchez, R. Sanchez-Hernandez, M. J. Sanchez-Montero, and C. Izquierdo, “Regeneration of carbonaceous adsorbents. Part I: Thermal Regeneration,” Microporous and Mesoporous Materials, vol. 202. Elsevier, pp. 259–276, Jan. 15, 2015, doi: 10.1016/j.micromeso.2014.02.045.
  • [8] F. Salvador, N. Martin-Sanchez, R. Sanchez-Hernandez, M. J. Sanchez-Montero, and C. Izquierdo, “Regeneration of carbonaceous adsorbents. Part II: Chemical, Microbiological and Vacuum Regeneration,” Microporous Mesoporous Mater., vol. 202, no. C, pp. 277–296, 2015, doi: 10.1016/j.micromeso.2014.08.019.
  • [9] Z. Yue, A. Vakili, and J. Wang, “Activated carbon fibers from meltblown isotropic pitch fiber webs for vapor phase adsorption of volatile organic compounds,” Chem. Eng. J., vol. 330, pp. 183–190, Dec. 2017, doi: 10.1016/J.CEJ.2017.07.150.
  • [10] A. H. Berger, J. A. Horowitz, T. Machalek, A. Wang, and A. S. Bhown, “A Novel Rapid Temperature Swing Adsorption Post-combustion CO2 Capture Process Using a Sorbent Polymer Composite,” in Energy Procedia, Jul. 2017, vol. 114, pp. 2193–2202, doi: 10.1016/j.egypro.2017.03.1356.
  • [11] D. W. Mazyck and F. S. Cannon, “Overcoming calcium catalysis during the thermal reactivation of granular activated carbon: Part I. Steam-curing plus ramped-temperature N2 treatment,” Carbon N. Y., vol. 38, no. 13, pp. 1785–1799, Jan. 2000, doi: 10.1016/S0008-6223(00)00013-0.
  • [12] J. E. Park, G. B. Lee, B. U. Hong, and S. Y. Hwang, “Regeneration of activated carbons spent by waste water treatment using KOH chemical activation,” Appl. Sci., vol. 9, no. 23, 2019, doi: 10.3390/app9235132.
  • [13] F. K. Yuen and B. H. Hameed, “Recent developments in the preparation and regeneration of activated carbons by microwaves,” Advances in Colloid and Interface Science, vol. 149, no. 1–2. Elsevier, pp. 19–27, Jul. 30, 2009, doi: 10.1016/j.cis.2008.12.005.
  • [14] A. L. Cazetta et al., “Thermal regeneration study of high surface area activated carbon obtained from coconut shell: Characterization and application of response surface methodology,” J. Anal. Appl. Pyrolysis, vol. 101, pp. 53–60, May 2013, doi: 10.1016/J.JAAP.2013.02.013.
  • [15] M. El Gamal, H. A. Mousa, M. H. El-Naas, R. Zacharia, and S. Judd, “Bio-regeneration of activated carbon: A comprehensive review,” Sep. Purif. Technol., vol. 197, pp. 345–359, May 2018, doi: 10.1016/j.seppur.2018.01.015.
  • [16] E. Sabio, E. González, J. F. González, C. M. González-García, A. Ramiro, and J. Gañan, “Thermal regeneration of activated carbon saturated with p-nitrophenol,” Carbon N. Y., vol. 42, no. 11, pp. 2285–2293, Jan. 2004, doi: 10.1016/J.CARBON.2004.05.007.
  • [17] D. Xin-hui, C. Srinivasakannan, and L. Jin-sheng, “Process optimization of thermal regeneration of spent coal based activated carbon using steam and application to methylene blue dye adsorption,” J. Taiwan Inst. Chem. Eng., vol. 45, no. 4, pp. 1618–1627, Jul. 2014, doi: 10.1016/J.JTICE.2013.10.019.
  • [18] G. Durán-Jiménez et al., “Fast regeneration of activated carbons saturated with textile dyes: Textural, thermal and dielectric characterization,” Chem. Eng. J., vol. 378, p. 121774, Dec. 2019, doi: 10.1016/J.CEJ.2019.05.135.
  • [19] D. H. S. Santos, J. L. S. Duarte, J. Tonholo, L. Meili, and C. L. P. S. Zanta, “Saturated activated carbon regeneration by UV-light, H2O2 and Fenton reaction,” Sep. Purif. Technol., vol. 250, p. 117112, Nov. 2020, doi: 10.1016/j.seppur.2020.117112.
  • [20] B. Sonmez Baghirzade, Y. Zhang, J. F. Reuther, N. B. Saleh, A. K. Venkatesan, and O. G. Apul, “Thermal Regeneration of Spent Granular Activated Carbon Presents an Opportunity to Break the Forever PFAS Cycle,” Environ. Sci. Technol., vol. 55, no. 9, pp. 5608–5619, 2021, doi: 10.1021/acs.est.0c08224.
  • [21] E. Zhou et al., “Study of the combination of sulfuric acid treatment and thermal regeneration of spent powdered activated carbons from decolourization process in glucosamine production,” Chem. Eng. Process. Process Intensif., vol. 121, pp. 224–231, Nov. 2017, doi: 10.1016/J.CEP.2017.09.008.
  • [22] S. G. Ramalingam et al., “Recovery comparisons-Hot nitrogen V s steam regeneration of toxic dichloromethane from activated carbon beds in oil sands process,” J. Hazard. Mater., vol. 205–206, pp. 222–228, 2012, doi: 10.1016/j.jhazmat.2011.12.062.
  • [23] A. Jareteg, D. Maggiolo, H. Thunman, S. Sasic, and H. Ström, “Investigation of steam regeneration strategies for industrial-scale temperature-swing adsorption of benzene on activated carbon,” Chem. Eng. Process. - Process Intensif., vol. 167, p. 108546, Oct. 2021, doi: 10.1016/J.CEP.2021.108546.
  • [24] H. Khas and N. Delhi, “Steam Regeneration of Adsorbents: An Experimental and Technical Review,” Chem. Sci. Trans., vol. 2, no. 4, pp. 1078–1088, 2013, doi: 10.7598/cst2013.545.
  • [25] V. Becher, A. Goanta, and H. Spliethoff, “Validation of spectral gas radiation models under oxyfuel conditions - Part C: Validation of simplified models,” Int. J. Greenh. Gas Control, vol. 11, no. April 2013, pp. 34–51, 2012, doi: 10.1016/j.ijggc.2012.07.011.
  • [26] T. Kim, J. Lee, and K. H. Lee, “Microwave heating of carbon-based solid materials,” Carbon Lett., vol. 15, no. 1, pp. 15–24, 2014, doi: 10.5714/CL.2014.15.1.015.
  • [27] X. Pi et al., “Microwave Irradiation Induced High-Efficiency Regeneration for Desulfurized Activated Coke: A Comparative Study with Conventional Thermal Regeneration,” Energy and Fuels, vol. 31, no. 9, pp. 9693–9702, 2017, doi: 10.1021/acs.energyfuels.7b01260.
  • [28] Z. Wang, C. Yu, H. Huang, W. Guo, J. Yu, and J. Qiu, “Carbon-enabled microwave chemistry: From interaction mechanisms to nanomaterial manufacturing,” Nano Energy, vol. 85, p. 106027, Jul. 2021, doi: 10.1016/j.nanoen.2021.106027.
  • [29] D. A. Jones, T. P. Lelyveld, S. D. Mavrofidis, S. W. Kingman, and N. J. Miles, “Microwave heating applications in environmental engineering - A review,” Resour. Conserv. Recycl., vol. 34, no. 2, pp. 75–90, Jan. 2002, doi: 10.1016/S0921-3449(01)00088-X.
  • [30] R. Cherbański, “Regeneration of granular activated carbon loaded with toluene – Comparison of microwave and conductive heating at the same active powers,” Chem. Eng. Process. Process Intensif., vol. 123, pp. 148–157, Jan. 2018, doi: 10.1016/j.cep.2017.11.008.
  • [31] O. Zanella, I. C. Tessaro, and L. A. Féris, “Desorption- and decomposition-based techniques for the regeneration of activated carbon,” Chem. Eng. Technol., vol. 37, no. 9, pp. 1447–1459, 2014, doi: 10.1002/ceat.201300808.
  • [32] H. Y. Hong, N. M. Moed, Y. Ku, and H. Y. Lee, “Ultrasonic regeneration studies on activated carbon loaded with isopropyl alcohol,” Appl. Sci., vol. 10, no. 21, pp. 1–13, 2020, doi: 10.3390/app10217596.
  • [33] T. Zhang et al., “Adsorption characteristics of chloramphenicol onto powdered activated carbon and its desorption performance by ultrasound,” Environ. Technol. (United Kingdom), vol. 42, no. 4, pp. 571–583, 2021, doi: 10.1080/09593330.2019.1637464.
  • [34] L. R. de Carvalho Costa, L. de Moraes Ribeiro, G. E. N. Hidalgo, and L. A. Féris, “Evaluation of efficiency and capacity of thermal, chemical and ultrasonic regeneration of tetracycline exhausted activated carbon,” Environ. Technol. (United Kingdom), vol. 43, no. 6, pp. 907–917, 2022, doi: 10.1080/09593330.2020.1811391.
  • [35] H. Patel, “Review on solvent desorption study from exhausted adsorbent,” J. Saudi Chem. Soc., vol. 25, no. 8, p. 101302, Aug. 2021, doi: 10.1016/J.JSCS.2021.101302.
  • [36] C. E. Alvarez-Pugliese, J. Acuña-Bedoya, S. Vivas-Galarza, L. A. Prado-Arce, and N. Marriaga-Cabrales, “Electrolytic regeneration of granular activated carbon saturated with diclofenac using BDD anodes,” Diam. Relat. Mater., vol. 93, pp. 193–199, Mar. 2019, doi: 10.1016/J.DIAMOND.2019.02.018.
  • [37] R. V. McQuillan, G. W. Stevens, and K. A. Mumford, “The electrochemical regeneration of granular activated carbons: A review,” Journal of Hazardous Materials, vol. 355. Elsevier B.V., pp. 34–49, Aug. 05, 2018, doi: 10.1016/j.jhazmat.2018.04.079.
  • [38] W. Zhou, X. Meng, J. Gao, H. Zhao, G. Zhao, and J. Ma, “Electrochemical regeneration of carbon-based adsorbents: a review of regeneration mechanisms, reactors, and future prospects,” Chem. Eng. J. Adv., vol. 5, p. 100083, Mar. 2021, doi: 10.1016/j.ceja.2020.100083.
  • [39] X. He, M. Elkouz, M. Inyang, E. Dickenson, and E. C. Wert, “Ozone regeneration of granular activated carbon for trihalomethane control,” J. Hazard. Mater., vol. 326, pp. 101–109, Mar. 2017, doi: 10.1016/J.JHAZMAT.2016.12.016.
  • [40] A. Cabrera-Codony, R. Gonzalez-Olmos, and M. J. Martín, “Regeneration of siloxane-exhausted activated carbon by advanced oxidation processes,” J. Hazard. Mater., vol. 285, pp. 501–508, 2015, doi: 10.1016/j.jhazmat.2014.11.053.
  • [41] B. Ledesma, S. Román, E. Sabio, and A. Álvarez-Murillo, “Improvement of spent activated carbon regeneration by wet oxidation processes,” J. Supercrit. Fluids, vol. 104, pp. 1–10, Sep. 2015, doi: 10.1016/j.supflu.2015.05.007.
  • [42] Y. Yuan, P. Gu, Y. Yang, and G. Zhang, “Regeneration of PAC used for reverse osmosis concentrate treatment by wet oxidation,” J. Ind. Eng. Chem., vol. 34, pp. 98–104, 2016, doi: 10.1016/j.jiec.2015.10.043.
  • [43] A. Hutson, S. Ko, and S. G. Huling, “Persulfate oxidation regeneration of granular activated carbon: Reversible impacts on sorption behavior,” Chemosphere, vol. 89, no. 10, pp. 1218–1223, Nov. 2012, doi: 10.1016/J.CHEMOSPHERE.2012.07.040.
  • [44] S. Jatta, S. Huang, and C. Liang, “A column study of persulfate chemical oxidative regeneration of toluene gas saturated activated carbon,” Chem. Eng. J., vol. 375, p. 122034, Nov. 2019, doi: 10.1016/j.cej.2019.122034.
  • [45] D. An, P. Westerhoff, M. Zheng, M. Wu, Y. Yang, and C. A. Chiu, “UV-activated persulfate oxidation and regeneration of NOM-Saturated granular activated carbon,” Water Res., vol. 73, pp. 304–310, Apr. 2015, doi: 10.1016/J.WATRES.2015.01.040.
  • [46] F. Salvador, N. Martin-Sanchez, R. Sanchez-Hernandez, M. J. Sanchez-Montero, and C. Izquierdo, “Regeneration of carbonaceous adsorbents. Part I: Thermal Regeneration,” Microporous Mesoporous Mater., vol. 202, pp. 259–276, 2015, doi: 10.1016/j.micromeso.2014.02.045.
  • [47] K. Y. Leong, S. L. Loo, M. J. K. Bashir, W. Da Oh, P. V. Rao, and J. W. Lim, “Bioregeneration of spent activated carbon: Review of key factors and recent mathematical models of kinetics,” Chinese J. Chem. Eng., vol. 26, no. 5, pp. 893–902, May 2018, doi: 10.1016/j.cjche.2017.09.018.
  • [48] Ö. Aktaş and F. Çeçen, “Adsorption and cometabolic bioregeneration in activated carbon treatment of 2-nitrophenol,” J. Hazard. Mater., vol. 177, no. 1–3, pp. 956–961, May 2010, doi: 10.1016/j.jhazmat.2010.01.011.
  • [49] S. L. Ng, C. E. Seng, and P. E. Lim, “Bioregeneration of activated carbon and activated rice husk loaded with phenolic compounds: Kinetic modeling,” Chemosphere, vol. 78, no. 5, pp. 510–516, Jan. 2010, doi: 10.1016/j.chemosphere.2009.11.041.
  • [50] Ö. Aktaş and F. Çeçen, “Effect of activation type on bioregeneration of various activated carbons loaded with phenol,” J. Chem. Technol. Biotechnol., vol. 81, no. 7, pp. 1081–1092, 2006, doi: 10.1002/jctb.1472.
  • [51] Ö. Aktaş and F. Çeçen, “Adsorption, desorption and bioregeneration in the treatment of 2-chlorophenol with activated carbon,” J. Hazard. Mater., vol. 141, no. 3, pp. 769–777, Mar. 2007, doi: 10.1016/j.jhazmat.2006.07.050.
  • [52] J. Ren, W. Yang, M. Hua, B. Pan, and W. Zhang, “Bioregeneration of hyper-cross-linked polymeric resin preloaded with phenol,” Bioresour. Technol., vol. 142, pp. 701–705, Aug. 2013, doi: 10.1016/j.biortech.2013.05.029.
  • [53] A. Larasati, G. D. Fowler, and N. J. D. Graham, “Chemical regeneration of granular activated carbon: Preliminary evaluation of alternative regenerant solutions,” Environ. Sci. Water Res. Technol., vol. 6, no. 8, pp. 2043–2056, 2020, doi: 10.1039/d0ew00328j.
  • [54] Atık Yönetimi Yönetmeliği, T.C. Resmi Gazete, Sayı: 29314, 02.04.2015.
  • [55] A. Larasati, G. D. Fowler, and N. J. D. Graham, “Insights into chemical regeneration of activated carbon for water treatment,” J Environ Chem Eng, vol. 9, no. 4, p. 105555, Aug. 2021, doi: 10.1016/J.JECE.2021.105555.

Tükenmiş Aktif Karbonun Rejenerasyonunda Yenilikçi Yaklaşımlar

Year 2024, Volume: 12 Issue: 1, 279 - 295, 26.01.2024
https://doi.org/10.29130/dubited.1178175

Abstract

Granül aktif karbon (GAK), gaz ve sıvı akımlardan kirleticileri uzaklaştırmak için uygulanan adsorpsiyon proseslerinde yaygın olarak kullanılmaktadır. Karbon bazlı adsorbentlerin yeniden kullanılabilirliği adsorpsiyon prosesinin teknik ve ekonomik anlamda yaygınlaşmasını sağlar. Ancak doygunluk sonrası bertarafla ilgili yüksek maliyetler ve çevresel sorunlar nedeniyle uygulama sınırlıdır. Doymuş GAK’in hizmet ömrünün uzatılması için uzun adsorpsiyon döngülerine imkan tanıyan, düşük maliyette, karbon kaybı minimum seviyede olan ve çevresel etkiyi en aza indiren farklı rejenerasyon teknikleri belirlenmiştir. Bu teknikler, iki ayrı yolla gerçekleştirilebilir: yalnızca aktif karbonda adsorbe edilen kirleticilerin desorpsiyonuna dayalı veya bu kirleticilerin ayrışmasına dayanan rejenerasyon. Genel olarak rejenerasyon metotları termal, kimyasal ve mikrobiyolojik olarak sınıflandırılmaktadır. Yeni geliştirilen rejenerasyon metotları, enerji verimliliği, seçiciliği, düşük maliyeti ve çevresel uyumluluğu açısından daha çok tercih edilmektedir. Ayrıca, yeni geliştirilen rejenerasyon metotları ile tükenmiş aktif karbonun rejenerasyonu yerinde yapılabilmektedir. Bu durum önemli avantaj sağlamaktadır. Bu çalışmada doymuş GAK'lerin rejenerasyonu ile ilgili literatür gözden geçirilmiş ve umut verici teknikler vurgulanmıştır.

References

  • [1] J. Pallarés, A. González-Cencerrado, and I. Arauzo, “Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam,” Biomass and Bioenergy, vol. 115, pp. 64–73, Aug. 2018, doi: 10.1016/J.BIOMBIOE.2018.04.015.
  • [2] B. Ferrández-Gómez, R. Ruiz-Rosas, S. Beaumont, D. Cazorla-Amorós, and E. Morallón, “Electrochemical regeneration of spent activated carbon from drinking water treatment plant at different scale reactors,” Chemosphere, vol. 264, p. 128399, Feb. 2021, doi: 10.1016/j.chemosphere.2020.128399.
  • [3] S. K. Smolin, O. V. Zabneva, and N. A. Klymenko, “Chemical Regeneration of Biological Activated Carbon in Removing Nitrophenol,” J. Water Chem. Technol., vol. 40, no. 3, pp. 126–130, 2018, doi: 10.3103/s1063455x18030025.
  • [4] A. V. Baskar et al., “Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review,” Sci. Total Environ., vol. 822, p. 153555, 2022, doi: 10.1016/j.scitotenv.2022.153555.
  • [5] E. O. Fagbohun et al., “Physicochemical regeneration of industrial spent activated carbons using a green activating agent and their adsorption for methyl orange,” Surfaces and Interfaces, vol. 29, p. 101696, Apr. 2022, doi: 10.1016/J.SURFIN.2021.101696.
  • [6] E. Gagliano, P. P. Falciglia, Y. Zaker, T. Karanfil, and P. Roccaro, “Microwave regeneration of granular activated carbon saturated with PFAS,” Water Res., vol. 198, p. 117121, Jun. 2021, doi: 10.1016/J.WATRES.2021.117121.
  • [7] F. Salvador, N. Martin-Sanchez, R. Sanchez-Hernandez, M. J. Sanchez-Montero, and C. Izquierdo, “Regeneration of carbonaceous adsorbents. Part I: Thermal Regeneration,” Microporous and Mesoporous Materials, vol. 202. Elsevier, pp. 259–276, Jan. 15, 2015, doi: 10.1016/j.micromeso.2014.02.045.
  • [8] F. Salvador, N. Martin-Sanchez, R. Sanchez-Hernandez, M. J. Sanchez-Montero, and C. Izquierdo, “Regeneration of carbonaceous adsorbents. Part II: Chemical, Microbiological and Vacuum Regeneration,” Microporous Mesoporous Mater., vol. 202, no. C, pp. 277–296, 2015, doi: 10.1016/j.micromeso.2014.08.019.
  • [9] Z. Yue, A. Vakili, and J. Wang, “Activated carbon fibers from meltblown isotropic pitch fiber webs for vapor phase adsorption of volatile organic compounds,” Chem. Eng. J., vol. 330, pp. 183–190, Dec. 2017, doi: 10.1016/J.CEJ.2017.07.150.
  • [10] A. H. Berger, J. A. Horowitz, T. Machalek, A. Wang, and A. S. Bhown, “A Novel Rapid Temperature Swing Adsorption Post-combustion CO2 Capture Process Using a Sorbent Polymer Composite,” in Energy Procedia, Jul. 2017, vol. 114, pp. 2193–2202, doi: 10.1016/j.egypro.2017.03.1356.
  • [11] D. W. Mazyck and F. S. Cannon, “Overcoming calcium catalysis during the thermal reactivation of granular activated carbon: Part I. Steam-curing plus ramped-temperature N2 treatment,” Carbon N. Y., vol. 38, no. 13, pp. 1785–1799, Jan. 2000, doi: 10.1016/S0008-6223(00)00013-0.
  • [12] J. E. Park, G. B. Lee, B. U. Hong, and S. Y. Hwang, “Regeneration of activated carbons spent by waste water treatment using KOH chemical activation,” Appl. Sci., vol. 9, no. 23, 2019, doi: 10.3390/app9235132.
  • [13] F. K. Yuen and B. H. Hameed, “Recent developments in the preparation and regeneration of activated carbons by microwaves,” Advances in Colloid and Interface Science, vol. 149, no. 1–2. Elsevier, pp. 19–27, Jul. 30, 2009, doi: 10.1016/j.cis.2008.12.005.
  • [14] A. L. Cazetta et al., “Thermal regeneration study of high surface area activated carbon obtained from coconut shell: Characterization and application of response surface methodology,” J. Anal. Appl. Pyrolysis, vol. 101, pp. 53–60, May 2013, doi: 10.1016/J.JAAP.2013.02.013.
  • [15] M. El Gamal, H. A. Mousa, M. H. El-Naas, R. Zacharia, and S. Judd, “Bio-regeneration of activated carbon: A comprehensive review,” Sep. Purif. Technol., vol. 197, pp. 345–359, May 2018, doi: 10.1016/j.seppur.2018.01.015.
  • [16] E. Sabio, E. González, J. F. González, C. M. González-García, A. Ramiro, and J. Gañan, “Thermal regeneration of activated carbon saturated with p-nitrophenol,” Carbon N. Y., vol. 42, no. 11, pp. 2285–2293, Jan. 2004, doi: 10.1016/J.CARBON.2004.05.007.
  • [17] D. Xin-hui, C. Srinivasakannan, and L. Jin-sheng, “Process optimization of thermal regeneration of spent coal based activated carbon using steam and application to methylene blue dye adsorption,” J. Taiwan Inst. Chem. Eng., vol. 45, no. 4, pp. 1618–1627, Jul. 2014, doi: 10.1016/J.JTICE.2013.10.019.
  • [18] G. Durán-Jiménez et al., “Fast regeneration of activated carbons saturated with textile dyes: Textural, thermal and dielectric characterization,” Chem. Eng. J., vol. 378, p. 121774, Dec. 2019, doi: 10.1016/J.CEJ.2019.05.135.
  • [19] D. H. S. Santos, J. L. S. Duarte, J. Tonholo, L. Meili, and C. L. P. S. Zanta, “Saturated activated carbon regeneration by UV-light, H2O2 and Fenton reaction,” Sep. Purif. Technol., vol. 250, p. 117112, Nov. 2020, doi: 10.1016/j.seppur.2020.117112.
  • [20] B. Sonmez Baghirzade, Y. Zhang, J. F. Reuther, N. B. Saleh, A. K. Venkatesan, and O. G. Apul, “Thermal Regeneration of Spent Granular Activated Carbon Presents an Opportunity to Break the Forever PFAS Cycle,” Environ. Sci. Technol., vol. 55, no. 9, pp. 5608–5619, 2021, doi: 10.1021/acs.est.0c08224.
  • [21] E. Zhou et al., “Study of the combination of sulfuric acid treatment and thermal regeneration of spent powdered activated carbons from decolourization process in glucosamine production,” Chem. Eng. Process. Process Intensif., vol. 121, pp. 224–231, Nov. 2017, doi: 10.1016/J.CEP.2017.09.008.
  • [22] S. G. Ramalingam et al., “Recovery comparisons-Hot nitrogen V s steam regeneration of toxic dichloromethane from activated carbon beds in oil sands process,” J. Hazard. Mater., vol. 205–206, pp. 222–228, 2012, doi: 10.1016/j.jhazmat.2011.12.062.
  • [23] A. Jareteg, D. Maggiolo, H. Thunman, S. Sasic, and H. Ström, “Investigation of steam regeneration strategies for industrial-scale temperature-swing adsorption of benzene on activated carbon,” Chem. Eng. Process. - Process Intensif., vol. 167, p. 108546, Oct. 2021, doi: 10.1016/J.CEP.2021.108546.
  • [24] H. Khas and N. Delhi, “Steam Regeneration of Adsorbents: An Experimental and Technical Review,” Chem. Sci. Trans., vol. 2, no. 4, pp. 1078–1088, 2013, doi: 10.7598/cst2013.545.
  • [25] V. Becher, A. Goanta, and H. Spliethoff, “Validation of spectral gas radiation models under oxyfuel conditions - Part C: Validation of simplified models,” Int. J. Greenh. Gas Control, vol. 11, no. April 2013, pp. 34–51, 2012, doi: 10.1016/j.ijggc.2012.07.011.
  • [26] T. Kim, J. Lee, and K. H. Lee, “Microwave heating of carbon-based solid materials,” Carbon Lett., vol. 15, no. 1, pp. 15–24, 2014, doi: 10.5714/CL.2014.15.1.015.
  • [27] X. Pi et al., “Microwave Irradiation Induced High-Efficiency Regeneration for Desulfurized Activated Coke: A Comparative Study with Conventional Thermal Regeneration,” Energy and Fuels, vol. 31, no. 9, pp. 9693–9702, 2017, doi: 10.1021/acs.energyfuels.7b01260.
  • [28] Z. Wang, C. Yu, H. Huang, W. Guo, J. Yu, and J. Qiu, “Carbon-enabled microwave chemistry: From interaction mechanisms to nanomaterial manufacturing,” Nano Energy, vol. 85, p. 106027, Jul. 2021, doi: 10.1016/j.nanoen.2021.106027.
  • [29] D. A. Jones, T. P. Lelyveld, S. D. Mavrofidis, S. W. Kingman, and N. J. Miles, “Microwave heating applications in environmental engineering - A review,” Resour. Conserv. Recycl., vol. 34, no. 2, pp. 75–90, Jan. 2002, doi: 10.1016/S0921-3449(01)00088-X.
  • [30] R. Cherbański, “Regeneration of granular activated carbon loaded with toluene – Comparison of microwave and conductive heating at the same active powers,” Chem. Eng. Process. Process Intensif., vol. 123, pp. 148–157, Jan. 2018, doi: 10.1016/j.cep.2017.11.008.
  • [31] O. Zanella, I. C. Tessaro, and L. A. Féris, “Desorption- and decomposition-based techniques for the regeneration of activated carbon,” Chem. Eng. Technol., vol. 37, no. 9, pp. 1447–1459, 2014, doi: 10.1002/ceat.201300808.
  • [32] H. Y. Hong, N. M. Moed, Y. Ku, and H. Y. Lee, “Ultrasonic regeneration studies on activated carbon loaded with isopropyl alcohol,” Appl. Sci., vol. 10, no. 21, pp. 1–13, 2020, doi: 10.3390/app10217596.
  • [33] T. Zhang et al., “Adsorption characteristics of chloramphenicol onto powdered activated carbon and its desorption performance by ultrasound,” Environ. Technol. (United Kingdom), vol. 42, no. 4, pp. 571–583, 2021, doi: 10.1080/09593330.2019.1637464.
  • [34] L. R. de Carvalho Costa, L. de Moraes Ribeiro, G. E. N. Hidalgo, and L. A. Féris, “Evaluation of efficiency and capacity of thermal, chemical and ultrasonic regeneration of tetracycline exhausted activated carbon,” Environ. Technol. (United Kingdom), vol. 43, no. 6, pp. 907–917, 2022, doi: 10.1080/09593330.2020.1811391.
  • [35] H. Patel, “Review on solvent desorption study from exhausted adsorbent,” J. Saudi Chem. Soc., vol. 25, no. 8, p. 101302, Aug. 2021, doi: 10.1016/J.JSCS.2021.101302.
  • [36] C. E. Alvarez-Pugliese, J. Acuña-Bedoya, S. Vivas-Galarza, L. A. Prado-Arce, and N. Marriaga-Cabrales, “Electrolytic regeneration of granular activated carbon saturated with diclofenac using BDD anodes,” Diam. Relat. Mater., vol. 93, pp. 193–199, Mar. 2019, doi: 10.1016/J.DIAMOND.2019.02.018.
  • [37] R. V. McQuillan, G. W. Stevens, and K. A. Mumford, “The electrochemical regeneration of granular activated carbons: A review,” Journal of Hazardous Materials, vol. 355. Elsevier B.V., pp. 34–49, Aug. 05, 2018, doi: 10.1016/j.jhazmat.2018.04.079.
  • [38] W. Zhou, X. Meng, J. Gao, H. Zhao, G. Zhao, and J. Ma, “Electrochemical regeneration of carbon-based adsorbents: a review of regeneration mechanisms, reactors, and future prospects,” Chem. Eng. J. Adv., vol. 5, p. 100083, Mar. 2021, doi: 10.1016/j.ceja.2020.100083.
  • [39] X. He, M. Elkouz, M. Inyang, E. Dickenson, and E. C. Wert, “Ozone regeneration of granular activated carbon for trihalomethane control,” J. Hazard. Mater., vol. 326, pp. 101–109, Mar. 2017, doi: 10.1016/J.JHAZMAT.2016.12.016.
  • [40] A. Cabrera-Codony, R. Gonzalez-Olmos, and M. J. Martín, “Regeneration of siloxane-exhausted activated carbon by advanced oxidation processes,” J. Hazard. Mater., vol. 285, pp. 501–508, 2015, doi: 10.1016/j.jhazmat.2014.11.053.
  • [41] B. Ledesma, S. Román, E. Sabio, and A. Álvarez-Murillo, “Improvement of spent activated carbon regeneration by wet oxidation processes,” J. Supercrit. Fluids, vol. 104, pp. 1–10, Sep. 2015, doi: 10.1016/j.supflu.2015.05.007.
  • [42] Y. Yuan, P. Gu, Y. Yang, and G. Zhang, “Regeneration of PAC used for reverse osmosis concentrate treatment by wet oxidation,” J. Ind. Eng. Chem., vol. 34, pp. 98–104, 2016, doi: 10.1016/j.jiec.2015.10.043.
  • [43] A. Hutson, S. Ko, and S. G. Huling, “Persulfate oxidation regeneration of granular activated carbon: Reversible impacts on sorption behavior,” Chemosphere, vol. 89, no. 10, pp. 1218–1223, Nov. 2012, doi: 10.1016/J.CHEMOSPHERE.2012.07.040.
  • [44] S. Jatta, S. Huang, and C. Liang, “A column study of persulfate chemical oxidative regeneration of toluene gas saturated activated carbon,” Chem. Eng. J., vol. 375, p. 122034, Nov. 2019, doi: 10.1016/j.cej.2019.122034.
  • [45] D. An, P. Westerhoff, M. Zheng, M. Wu, Y. Yang, and C. A. Chiu, “UV-activated persulfate oxidation and regeneration of NOM-Saturated granular activated carbon,” Water Res., vol. 73, pp. 304–310, Apr. 2015, doi: 10.1016/J.WATRES.2015.01.040.
  • [46] F. Salvador, N. Martin-Sanchez, R. Sanchez-Hernandez, M. J. Sanchez-Montero, and C. Izquierdo, “Regeneration of carbonaceous adsorbents. Part I: Thermal Regeneration,” Microporous Mesoporous Mater., vol. 202, pp. 259–276, 2015, doi: 10.1016/j.micromeso.2014.02.045.
  • [47] K. Y. Leong, S. L. Loo, M. J. K. Bashir, W. Da Oh, P. V. Rao, and J. W. Lim, “Bioregeneration of spent activated carbon: Review of key factors and recent mathematical models of kinetics,” Chinese J. Chem. Eng., vol. 26, no. 5, pp. 893–902, May 2018, doi: 10.1016/j.cjche.2017.09.018.
  • [48] Ö. Aktaş and F. Çeçen, “Adsorption and cometabolic bioregeneration in activated carbon treatment of 2-nitrophenol,” J. Hazard. Mater., vol. 177, no. 1–3, pp. 956–961, May 2010, doi: 10.1016/j.jhazmat.2010.01.011.
  • [49] S. L. Ng, C. E. Seng, and P. E. Lim, “Bioregeneration of activated carbon and activated rice husk loaded with phenolic compounds: Kinetic modeling,” Chemosphere, vol. 78, no. 5, pp. 510–516, Jan. 2010, doi: 10.1016/j.chemosphere.2009.11.041.
  • [50] Ö. Aktaş and F. Çeçen, “Effect of activation type on bioregeneration of various activated carbons loaded with phenol,” J. Chem. Technol. Biotechnol., vol. 81, no. 7, pp. 1081–1092, 2006, doi: 10.1002/jctb.1472.
  • [51] Ö. Aktaş and F. Çeçen, “Adsorption, desorption and bioregeneration in the treatment of 2-chlorophenol with activated carbon,” J. Hazard. Mater., vol. 141, no. 3, pp. 769–777, Mar. 2007, doi: 10.1016/j.jhazmat.2006.07.050.
  • [52] J. Ren, W. Yang, M. Hua, B. Pan, and W. Zhang, “Bioregeneration of hyper-cross-linked polymeric resin preloaded with phenol,” Bioresour. Technol., vol. 142, pp. 701–705, Aug. 2013, doi: 10.1016/j.biortech.2013.05.029.
  • [53] A. Larasati, G. D. Fowler, and N. J. D. Graham, “Chemical regeneration of granular activated carbon: Preliminary evaluation of alternative regenerant solutions,” Environ. Sci. Water Res. Technol., vol. 6, no. 8, pp. 2043–2056, 2020, doi: 10.1039/d0ew00328j.
  • [54] Atık Yönetimi Yönetmeliği, T.C. Resmi Gazete, Sayı: 29314, 02.04.2015.
  • [55] A. Larasati, G. D. Fowler, and N. J. D. Graham, “Insights into chemical regeneration of activated carbon for water treatment,” J Environ Chem Eng, vol. 9, no. 4, p. 105555, Aug. 2021, doi: 10.1016/J.JECE.2021.105555.
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Nevim Genç 0000-0002-6185-1090

Esin Kacıra 0000-0001-9833-0419

Publication Date January 26, 2024
Published in Issue Year 2024 Volume: 12 Issue: 1

Cite

APA Genç, N., & Kacıra, E. (2024). Tükenmiş Aktif Karbonun Rejenerasyonunda Yenilikçi Yaklaşımlar. Duzce University Journal of Science and Technology, 12(1), 279-295. https://doi.org/10.29130/dubited.1178175
AMA Genç N, Kacıra E. Tükenmiş Aktif Karbonun Rejenerasyonunda Yenilikçi Yaklaşımlar. DUBİTED. January 2024;12(1):279-295. doi:10.29130/dubited.1178175
Chicago Genç, Nevim, and Esin Kacıra. “Tükenmiş Aktif Karbonun Rejenerasyonunda Yenilikçi Yaklaşımlar”. Duzce University Journal of Science and Technology 12, no. 1 (January 2024): 279-95. https://doi.org/10.29130/dubited.1178175.
EndNote Genç N, Kacıra E (January 1, 2024) Tükenmiş Aktif Karbonun Rejenerasyonunda Yenilikçi Yaklaşımlar. Duzce University Journal of Science and Technology 12 1 279–295.
IEEE N. Genç and E. Kacıra, “Tükenmiş Aktif Karbonun Rejenerasyonunda Yenilikçi Yaklaşımlar”, DUBİTED, vol. 12, no. 1, pp. 279–295, 2024, doi: 10.29130/dubited.1178175.
ISNAD Genç, Nevim - Kacıra, Esin. “Tükenmiş Aktif Karbonun Rejenerasyonunda Yenilikçi Yaklaşımlar”. Duzce University Journal of Science and Technology 12/1 (January 2024), 279-295. https://doi.org/10.29130/dubited.1178175.
JAMA Genç N, Kacıra E. Tükenmiş Aktif Karbonun Rejenerasyonunda Yenilikçi Yaklaşımlar. DUBİTED. 2024;12:279–295.
MLA Genç, Nevim and Esin Kacıra. “Tükenmiş Aktif Karbonun Rejenerasyonunda Yenilikçi Yaklaşımlar”. Duzce University Journal of Science and Technology, vol. 12, no. 1, 2024, pp. 279-95, doi:10.29130/dubited.1178175.
Vancouver Genç N, Kacıra E. Tükenmiş Aktif Karbonun Rejenerasyonunda Yenilikçi Yaklaşımlar. DUBİTED. 2024;12(1):279-95.