Rüzgâr Temelli Piezoelektrik Jeneratör Tasarımı
Year 2024,
Volume: 12 Issue: 2, 1166 - 1177, 29.04.2024
Okan Gökhan Usta
,
Sibel Akkaya Oy
Abstract
Bu çalışmada da rüzgar temelli bir piezoelektrik generatör tasarımı yapılmıştır. Sunulan bu sistem piezoelektrik enerji dönüşümünü temel almaktadır. Bilindiği üzere piezoelektrik materyaller titreşim enerjisini elektrik enerjisine dönüştürebilen materyallerdir. Sunulan bu sistem piezoelektrik enerji dönüşümünü temel almaktadır. Bilindiği üzere piezoelektrik materyaller titreşim enerjisini elektrik enerjisine dönüştürebilen materyallerdir. Bu çalışmada ise temel olarak; helis bir dikey eksen rüzgar kanatları üzerine yerleştirilmiş piezoelektrik titreşim enerji kartları ile rüzgar hızından faydalanarak bir titreşim oluşturulup elektrik enerjisi üretimi esansına dayanmaktadır. Rezonans değerini yükseltmek amacıyla sensörlerin üstüne trapez yayları ve neodyum mıknatıs monte edilmiştir. Önerilen sistemde toplam 30 adet film tip piezoelektrik dönüştürücü kullanılmıştır. Tanıtılan deneysel generatörün 36 m/sn rüzgar hız aralığı için maximum çıkış gücü 408,79 µW civarındadır.
References
- [1] Kayikçi, Z., Akarsu, C., Sönmez, V.Z., & Sivri, N. (2023). Atık su Arıtma Tesislerinde Sürdürülebilir Enerji Üretimi için Mikro Hidroelektrik Teknolojisi Kullanımı: İstanbul Örneği. Journal of Anatolian Environmental and Animal Sciences.
- [2] Li, T., & Lee, P. S. (2022). Piezoelectric energy harvesting technology: from materials, structures, to applications. Small Structures, 3(3), 2100128.
- [3] Liu, Y., Khanbareh, H., Halim, M. A., Feeney, A., Zhang, X., Heidari, H., & Ghannam, R. (2021). Piezoelectric energy harvesting for self‐powered wearable upper limb applications. Nano Select, 2(8), 1459-1479.
- [4] C.L. Yang, K.W. Chen, and C.D. Chen, “Model and Characterization of a Press-Button-Type Piezoelectric Energy Harvester”, IEEE/ASME Transactions on Mechatronics, vol. 24, no. 1, pp. 132-143, 2019.
- [5] J. Schoeftner and G. Buchberger, “A contribution on the optimal design of a vibrating cantilever in a power harvesting application–Optimization of piezoelectric layer distributions in combination with advanced harvesting circuits,” EngStruct, vol. 53, no. 92, pp. 101, 2013.
- [6] Q. Luo and V. Tong, “Design and testing for shape control of piezoelectric structures using topology optimization.” EngStruct, vol. 97, pp. 90–104, 2015.
- [7] H. Lee, H. Jang, J. Park, S. Jeong, T. Park and S. Choı, “Design of a piezoelectric energy-harvesting shock absorber system for a vehicle”, Integrated Ferroelectrics, vol. 141, pp. 32–44, 2013.
- [8] Y. Cao, J. Li, A. Sha, Z. Liu, F. Zhang and X. Li, “A power-intensive piezoelectric energy harvester with efficient load utilization for road energy collection: Design, testing, and application”, Journal of Cleaner Production, vol. 369, pp. 133287, 2022.
- [9] C. Wei and H. Taghavifar, “A novel approach to energy harvesting from vehicle suspension system: half-vehicle model”, Energy, vol. 134, pp. 279-288, 2017.
- [10] A. Moure, M.A. Izquierdo Rodríguez, S. Hernández Rueda, A. Gonzalo, F. Rubio-Marcos, D. Urquiza Cuadros, A. Pérez-Lepe, J.F. Fernández, “Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting. Energy Conversion and Management, vol. 112, pp. 246–253, 2016. https://doi.org/10.1016/j.enconman.2016.01.030
- [11] A. Jasim, H. Wang, G. Yesner, A. Safari and A. Maher, “Optimized design of layered bridge harvester for piezoelectric energy harvesting from roadway.” Energy, vol. 141, pp. 1133–1145, 2017. https://doi.org/10.1016/j.energy.2017.10.005.
- [12] A. Jasim, G. Yesner, H. Wang, A. Safari, A. Maher and B. Basily, “Laboratory testing and numerical simulation of PEH for roadway applications”, Appl. Energy, vol. 224, pp. 438–447, 2018. https://doi.org/10.1016/j.apenergy.2018.05.040.
- [13] A.F. Jasim, H. Wang, G. Yesner, A. Safari and P. Szary, “Performance analysis of piezoelectric energy harvesting in pavement: laboratory testing and field simulation.” Transport. Res. Rec. vol. 2673, pp. 115–124, 2019.
- [14] F. Khoshnoud, D.B. Sundar, M.N.M. Badi, Y.K. Chen, R.K. Calay and C.W. De Silva. “Energy harvesting from suspension systems using regenerative force actuators”, Int J Veh Noise Vib, vol. 9, no. 3-4, pp. 294-311, 2013.
- [15] X.D. Xie, Q. Wang and N. Wu, “Energy harvesting from transverse ocean waves by a piezoelectric plate”, International Journal of Engineering Science, vol. 81, pp. 41–48, 2014.
- [16] Shan, X., Shan, R., Song, B., Liu, B., & Xie, T., “Novel energy harvesting: A macro fiber composite piezoelectric energy harvester in the water vortex”, Ceramics International, vol. 41, pp. 763–767, 2015.
- [17] W. Cai, V. Roussinova and V. Stoilov, “Piezoelectric wave energy harvester”, Renewable Energy, vol. 196, pp. 973-982, 2022.
- [18] N.V. Viet, X.D. Xie, K.M. Liew, N. Banthia and Q. Wang, “Energy harvesting from ocean waves by a floating energy harvester”, Energy, vol. 112, no. 1, p. 1219e1226, 2016.
- [19] X.D. Xie, Q. Wang and N. Wu, “Potential of a piezoelectric energy harvester from sea waves”, J. Sound Vib. vol. 333, no. 5, p. 1421e1429, 2014. https://doi.org/10.1016/ j.jsv.2013.11.008.
- [20] N. Yeong-min, L. Hyun-seok and P. Jong-kyu, “A study on piezoelectric energy harvester using kinetic energy of ocean”, Journal of Mechanical Science and Technology, vol. 32, no. 10, 4747-4755, 2018.
- [21] G. Acciari, M. Caruso, R. Miceli, L. Riggi, P. Romano, G. Schettino and F. Viola, “Piezoelectric Rainfall Energy Harvester Performance by an Advanced Arduino-Based Measuring System” IEEE Transactions on Industry Applications, vol. 54, no. 1 (January/February), pp. 458-468, 2018.
- [22] W. Wang, J. Cao, C.R. Bowen, S. Zhou and J. Lin, “Optimum resistance analysis and experimental verification of nonlinear piezoelectric energy harvesting from human motions”, Energy, vol. 118, pp. 221-230, 2017.
- [23] A.C. Turkmen and C. Celik, “Energy harvesting with the piezoelectric material integrated shoe”, Energy, vol. 150, pp. 556-564, 2018.
- [24] M.A. Johar, J.H. Kang, M. A. Hassan and S.W. Ryu, “A scalable, flexible and transparent GaN-based heterojunction piezoelectric nanogenerator for bending, air-flow and vibration energy harvesting”, Applied Energy, vol. 222, pp. 781–789, 2018.
- [25] S. Akkaya Oy, A. E. Özdemir, “Piezoelectric based low power wind generator design and testing”, Arabian Journal for Science and Engineering, vol. 43, no. 6, pp. 2759–2767, 2018.
- [26] S. Akkaya Oy, “A piezoelectric energy harvesting from the vibration of the airflow around a moving vehicle”. Int. Trans. Electr. Energy Syst. vol. 30, p. e12655, 2020.
- [27] A. Ballato, “Piezoelectricity: History and new thrusts”. IEEE Ultrasonics Symposium. Proceedings. San Antonio, USA, 1996.
- [28] O.G. Usta, “Rüzgâr temelli piezoelektrik jeneratör tasarımı ve MPPT ile kontrolü”, Yüksek lisans tezi, Fen Bilimleri Enstitüsü, Ordu Üniversitesi, Ordu, Türkiye, 2019.
- [29] R.S. Dahiya and M. Valle, Robotic Tactile Sensing. Springer, New York, 2013.
- [30] A. Ozdemir, “A novel circuit topology for piezoelectric transducers in a piezoelectric energy harvester”, IET Renewable Power Generation, vol. 13, pp. 2105-2110, 2019.
- [31] S. Akkaya Oy, “A design of mass-spring type piezoelectric energy harvesting”, Scientia Iranica, vol. 28, no. 6, pp. 3504-3511, 2021.
Year 2024,
Volume: 12 Issue: 2, 1166 - 1177, 29.04.2024
Okan Gökhan Usta
,
Sibel Akkaya Oy
References
- [1] Kayikçi, Z., Akarsu, C., Sönmez, V.Z., & Sivri, N. (2023). Atık su Arıtma Tesislerinde Sürdürülebilir Enerji Üretimi için Mikro Hidroelektrik Teknolojisi Kullanımı: İstanbul Örneği. Journal of Anatolian Environmental and Animal Sciences.
- [2] Li, T., & Lee, P. S. (2022). Piezoelectric energy harvesting technology: from materials, structures, to applications. Small Structures, 3(3), 2100128.
- [3] Liu, Y., Khanbareh, H., Halim, M. A., Feeney, A., Zhang, X., Heidari, H., & Ghannam, R. (2021). Piezoelectric energy harvesting for self‐powered wearable upper limb applications. Nano Select, 2(8), 1459-1479.
- [4] C.L. Yang, K.W. Chen, and C.D. Chen, “Model and Characterization of a Press-Button-Type Piezoelectric Energy Harvester”, IEEE/ASME Transactions on Mechatronics, vol. 24, no. 1, pp. 132-143, 2019.
- [5] J. Schoeftner and G. Buchberger, “A contribution on the optimal design of a vibrating cantilever in a power harvesting application–Optimization of piezoelectric layer distributions in combination with advanced harvesting circuits,” EngStruct, vol. 53, no. 92, pp. 101, 2013.
- [6] Q. Luo and V. Tong, “Design and testing for shape control of piezoelectric structures using topology optimization.” EngStruct, vol. 97, pp. 90–104, 2015.
- [7] H. Lee, H. Jang, J. Park, S. Jeong, T. Park and S. Choı, “Design of a piezoelectric energy-harvesting shock absorber system for a vehicle”, Integrated Ferroelectrics, vol. 141, pp. 32–44, 2013.
- [8] Y. Cao, J. Li, A. Sha, Z. Liu, F. Zhang and X. Li, “A power-intensive piezoelectric energy harvester with efficient load utilization for road energy collection: Design, testing, and application”, Journal of Cleaner Production, vol. 369, pp. 133287, 2022.
- [9] C. Wei and H. Taghavifar, “A novel approach to energy harvesting from vehicle suspension system: half-vehicle model”, Energy, vol. 134, pp. 279-288, 2017.
- [10] A. Moure, M.A. Izquierdo Rodríguez, S. Hernández Rueda, A. Gonzalo, F. Rubio-Marcos, D. Urquiza Cuadros, A. Pérez-Lepe, J.F. Fernández, “Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting. Energy Conversion and Management, vol. 112, pp. 246–253, 2016. https://doi.org/10.1016/j.enconman.2016.01.030
- [11] A. Jasim, H. Wang, G. Yesner, A. Safari and A. Maher, “Optimized design of layered bridge harvester for piezoelectric energy harvesting from roadway.” Energy, vol. 141, pp. 1133–1145, 2017. https://doi.org/10.1016/j.energy.2017.10.005.
- [12] A. Jasim, G. Yesner, H. Wang, A. Safari, A. Maher and B. Basily, “Laboratory testing and numerical simulation of PEH for roadway applications”, Appl. Energy, vol. 224, pp. 438–447, 2018. https://doi.org/10.1016/j.apenergy.2018.05.040.
- [13] A.F. Jasim, H. Wang, G. Yesner, A. Safari and P. Szary, “Performance analysis of piezoelectric energy harvesting in pavement: laboratory testing and field simulation.” Transport. Res. Rec. vol. 2673, pp. 115–124, 2019.
- [14] F. Khoshnoud, D.B. Sundar, M.N.M. Badi, Y.K. Chen, R.K. Calay and C.W. De Silva. “Energy harvesting from suspension systems using regenerative force actuators”, Int J Veh Noise Vib, vol. 9, no. 3-4, pp. 294-311, 2013.
- [15] X.D. Xie, Q. Wang and N. Wu, “Energy harvesting from transverse ocean waves by a piezoelectric plate”, International Journal of Engineering Science, vol. 81, pp. 41–48, 2014.
- [16] Shan, X., Shan, R., Song, B., Liu, B., & Xie, T., “Novel energy harvesting: A macro fiber composite piezoelectric energy harvester in the water vortex”, Ceramics International, vol. 41, pp. 763–767, 2015.
- [17] W. Cai, V. Roussinova and V. Stoilov, “Piezoelectric wave energy harvester”, Renewable Energy, vol. 196, pp. 973-982, 2022.
- [18] N.V. Viet, X.D. Xie, K.M. Liew, N. Banthia and Q. Wang, “Energy harvesting from ocean waves by a floating energy harvester”, Energy, vol. 112, no. 1, p. 1219e1226, 2016.
- [19] X.D. Xie, Q. Wang and N. Wu, “Potential of a piezoelectric energy harvester from sea waves”, J. Sound Vib. vol. 333, no. 5, p. 1421e1429, 2014. https://doi.org/10.1016/ j.jsv.2013.11.008.
- [20] N. Yeong-min, L. Hyun-seok and P. Jong-kyu, “A study on piezoelectric energy harvester using kinetic energy of ocean”, Journal of Mechanical Science and Technology, vol. 32, no. 10, 4747-4755, 2018.
- [21] G. Acciari, M. Caruso, R. Miceli, L. Riggi, P. Romano, G. Schettino and F. Viola, “Piezoelectric Rainfall Energy Harvester Performance by an Advanced Arduino-Based Measuring System” IEEE Transactions on Industry Applications, vol. 54, no. 1 (January/February), pp. 458-468, 2018.
- [22] W. Wang, J. Cao, C.R. Bowen, S. Zhou and J. Lin, “Optimum resistance analysis and experimental verification of nonlinear piezoelectric energy harvesting from human motions”, Energy, vol. 118, pp. 221-230, 2017.
- [23] A.C. Turkmen and C. Celik, “Energy harvesting with the piezoelectric material integrated shoe”, Energy, vol. 150, pp. 556-564, 2018.
- [24] M.A. Johar, J.H. Kang, M. A. Hassan and S.W. Ryu, “A scalable, flexible and transparent GaN-based heterojunction piezoelectric nanogenerator for bending, air-flow and vibration energy harvesting”, Applied Energy, vol. 222, pp. 781–789, 2018.
- [25] S. Akkaya Oy, A. E. Özdemir, “Piezoelectric based low power wind generator design and testing”, Arabian Journal for Science and Engineering, vol. 43, no. 6, pp. 2759–2767, 2018.
- [26] S. Akkaya Oy, “A piezoelectric energy harvesting from the vibration of the airflow around a moving vehicle”. Int. Trans. Electr. Energy Syst. vol. 30, p. e12655, 2020.
- [27] A. Ballato, “Piezoelectricity: History and new thrusts”. IEEE Ultrasonics Symposium. Proceedings. San Antonio, USA, 1996.
- [28] O.G. Usta, “Rüzgâr temelli piezoelektrik jeneratör tasarımı ve MPPT ile kontrolü”, Yüksek lisans tezi, Fen Bilimleri Enstitüsü, Ordu Üniversitesi, Ordu, Türkiye, 2019.
- [29] R.S. Dahiya and M. Valle, Robotic Tactile Sensing. Springer, New York, 2013.
- [30] A. Ozdemir, “A novel circuit topology for piezoelectric transducers in a piezoelectric energy harvester”, IET Renewable Power Generation, vol. 13, pp. 2105-2110, 2019.
- [31] S. Akkaya Oy, “A design of mass-spring type piezoelectric energy harvesting”, Scientia Iranica, vol. 28, no. 6, pp. 3504-3511, 2021.