Review
BibTex RIS Cite

rFVIII Rekombinant Protein Üretiminde Sıvı Akışı, Karıştırma, Isı ve Kütle Transferi: Yukarı Akış ve Aşağı Akış Süreçleri

Year 2024, Volume: 12 Issue: 3, 1358 - 1370, 31.07.2024
https://doi.org/10.29130/dubited.1300873

Abstract

Ana kan pıhtılaşma yolları, büyük ölçüde bir glikoprotein kofaktörü olan faktör VIII'e bağlıdır. X'e bağlı baskın bir hastalık olan Hemofili A, ticari olarak temin edilebilen çok karmaşık bir terapötik protein olan FVIII ile tedavi edilir. Şu anda en kapsamlı ve önemli pıhtılaşma faktörlerinden biridir. Hemofili A hastalarında hemorajik hastalığı tedavi etmek için iki izole edilmiş plazma ve rekombinant liyofilize FVIII konsantresi kullanılır. İnsan kanından ayrıştırılan plazmadan elde edilmiş ürünler hem insansı hem de hayvansal protein içermeyen ve ökaryotik hücrelerde kopyalanan rekombinant FVIII (rFVIII) ürünler ile ikame edilebilir. Sıvı akışı, karıştırma, ısı ve kütle transferi olayları ile ilgili olarak, rFVIII'in yukarı akış ve aşağı akış üretim işlemleri bu makalede kısaca gözden geçirilecektir.

Project Number

Not applicable

References

  • [1] A process of purifying coagulation factor VIII, by C. Borgvall, U. Ericsson, G. Gilljam, M. Jernberg, and S. Winge. (2009, Dec. 30). International Patent WO2009/156430 [Online]. Available: https://patentimages.storage.googleapis.com/4e/80/26/2021dea5d707ba/WO2009156430A1.pdf
  • [2] A. Coppola, M. Di Capua, M. N. Di Minno, M. Di Palo, E. Marrone, P. Ierano, C. Arturo, A. Tufano, and A. M. Cerbone, “Treatment of hemophilia: a review of current advances and ongoing issues,” Journal of Blood Medicine, vol. 1, pp. 183–195, Aug. 2010
  • [3] M. De Jesus and F. M. Wurm, “Manufacturing recombinant proteins in kg-ton quantities using animal cells in bioreactors,” European Journal of Pharmaceuticals and Biopharmaceutics, vol. 78, no. 2, pp. 184–188, 2011
  • [4] S. Delignat, I. Peyron, M. El Ghazaly, S. V. Kaveri, J. Rohde, F. Mueller, and S. Lacroix-Desmazes, “Biochemical characterization and immunogenicity of Neureight, a recombinant full-length factor VIII produced by fed-batch process in disposable bioreactors,” Cellular Immunology, vol. 331, pp. 22–29, Sep. 2018
  • [5] M. Franchini, “The modern treatment of haemophilia: a narrative review,” Blood Transfusion, vol. 11, no. 2, pp. 178–182, Apr. 2013
  • [6] R. L. Johnson, “Flow cytometry: from research to clinical laboratory applications,” Clinics in Laboratory Medicine, vol. 13, no. 4, pp. 831–852, Dec. 1993
  • [7] A process for isolation and purification of a target protein free of prion protein (PrPSC), by G. Gilljam, M. Jernberg, S. Winge, and A. Neisser-Svae. (2009, Feb. 26). Canada Patent 2696865 A1 [Online]. Available: https://patentimages.storage.googleapis.com/b7/5b/38/ad016994f15964/CA2696865A1.pdf
  • [8] C. S. Kaas, C. Kristensen, J. J. Hansen, G. Bolt, and M. R. Andersen, “Full transcriptome analysis and Chinese hamster ovary cell lines producing a dynamic range of coagulation factor VIII,” in BMC Proceedings, vol. 7, suppl. 6, Dec. 2013, Art. no. P56
  • [9] G. S. Pandey, S. C. Tseng, T. E. Howard, and Z. E. Sauna, “Detection of intracellular factor VIII protein in peripheral blood mononuclear cells by flow cytometry,” Biomed Research International, Feb. 2013, Art. no. 793502
  • [10] J. Puetz and F. M. Wurm, “Recombinant proteins for industrial versus pharmaceutical purposes: a review of process and pricing.” Processes, vol. 7, no. 8, Jul. 2019, Art. no. 476
  • [11] C. A. Sellick, A. R. Maqsood, A. S. Croxford, A. J. Dickson, R. Goodacre, and G. M. Stephens, “Optimizing CHO cell culture conditions,” Genetic Engineering & Biotechnology News, vol. 29, no. 17. Oct. 2009.
  • [12] K. R. Viel, A. Ameri, T. C. Abshire, R. V. Iyer, R. G. Watts, C. Lutcher, C. Channell, and T. E. Howard, “Inhibitors of factor VIII in black patients with hemophilia,” New England Journal of Medicine, vol. 360, no. 16, pp. 1618–1627, Apr. 2009
  • [13] Method for improved isolation of recombinantly produced proteins, by S. Winge. (2006, Oct. 5). International Patent WO 2006/103258 [Online]. Available: https://patentimages.storage.googleapis.com/47/22/50/338eafb2967f5e/WO2006103258A1.pdf
  • [14] A process for manufacturing Factor VIII having an improved ratio of FVIII:C/FVIII:Ag, by S. Winge, M. Dadaian, E. Johansson, and B. Fuchs. (2015, Jul. 23). International Patent WO 2015/0107222 [Online]. Available: https://patentimages.storage.googleapis.com/bf/e6/27/c7ffd1d800dfd7/WO2015107222A1.pdf
  • [15] S. Winge, L. Yderland, C. Kannicht, P. Hermans, S. Adema, T. Schmidt, G. Gilljam, M. Linhult, M. Tiemeyer, L. Belyanskaya, and O. Walter, “Development, upscaling and validation of the purification process for human-cl rhFVIII (Nuwig®), a new generation recombinant factor VIII produced in a human cell-line,” Protein Expression and Purification, vol. 115, Nov. 2015, Art. no. 165-175
  • [16] “Single-use bioprocess containers.” http://assets.thermofisher.com/TFS-Assets/BPD/brochures/bioprocess-containers-brochure.pdf (accessed Oct. 12, 2023).
  • [17] “HyPerforma 5:1 2,000L single-use bioreactor.” http://assets.thermofisher.com/TFS-Assets/BPD/brochures/hyperforma-5-1-single-use-bioreactor-data-sheet-2000L.pdf (accessed Oct. 12, 2023).
  • [18] “2,000 L HyPerforma single-use bioreactor evaluation.” http://assets.thermofisher.com/TFS-Assets/BPD/Application-Notes/single-use-bioreactor-2000l-evaluation-app-note.pdf (accessed Oct. 12, 2023),
  • [19] “NIH Blood Bank.” https://clinicalcenter.nih.gov/blooddonor/aboutus.html (accessed Oct. 12, 2023).
  • [20] “Anti-factor VIII antibody [27.4] (ab41188).” https://www.abcam.com/products/primary-antibodies/factor-viii-antibody-274-ab41188.html (accessed Oct. 12, 2023).
  • [21] “genOway cellular models.” https://www.genoway.com/ (accessed Oct. 12, 2023).
  • [22] “Custom plasmid DNA isolation.” https://lofstrand.com/plasmid-dna-isolation/ (accessed Oct. 12, 2023).
  • [23] “Invitrogen solutions.” https://www.thermofisher.com/us/en/home/brands/invitrogen.html (accessed Oct. 12, 2023).
  • [24] “GenJet in vitro DNA transfection reagent.” https://signagen.com/In-Vitro-DNA-Transfection-Reagents/SL100488/GenJet-In-Vitro-DNA-Transfection-Reagent (accessed Oct. 12, 2023).
  • [25] “FlowJo software platform for single-cell flow cytometry analysis.” https://www.flowjo.com/solutions/flowjo (accessed Oct. 12, 2023).
  • [26] “Single-use bioprocessing market size, share & trends analysis report by product (work equipment, apparatus & plants), by workflow (upstream, downstream), by end-use, by region, and segment forecasts, 2023–2030.” https://www.grandviewresearch.com/industry-analysis/single-use-bioprocessing-market (accessed Oct. 12, 2023).
  • [27] S.A. Fahs, M. T. Hille, Q. Shi, H. Weiler, and R. R. Montgomery, “A conditional knockout mouse model reveals endothelial cells as the principal and possibly exclusive source of plasma factor VIII,” Blood, vol. 123, no. 24, Jun. 2014, Art. no. 3706-13
  • [28] D. E. S. Nogueira, J. M. S. Cabral, C. A. V. Rodrigues, “Single-use bioreactors for human pluripotent and adult stem cells: towards regenerative medicine applications,” Bioengineering (Basel), vol. 8, no. 5, May 2021, Art. no. 68

Upstream and Downstream Processes of rFVIII Recombinant Protein Manufacturing in Respect to Fluid Flow, Mixing, Heat and Mass Transfer

Year 2024, Volume: 12 Issue: 3, 1358 - 1370, 31.07.2024
https://doi.org/10.29130/dubited.1300873

Abstract

The intrinsic blood coagulation pathways depend heavily on factor VIII, a glycoprotein cofactor. Hemophilia A, an X-linked dominant disease, is treated with FVIII, a very complex therapeutic protein commercially available. It is currently one of the most extensive and significant coagulation factors. Two isolated plasma and recombinant lyophilized FVIII concentrates are used to treat hemorrhagic illness in hemophilia A sufferers. Plasma-extracted products separated from humanoid blood can be substituted with recombinant FVIII (rFVIII) products, which are free of both humanoid and carnal proteins and transcribed in eukaryotic cells. In regard to fluid flow, mixing, heat, and mass transfer phenomena, the upstream and downstream manufacturing processes of rFVIII will be briefly reviewed in this publication.

Supporting Institution

No supporting institution

Project Number

Not applicable

References

  • [1] A process of purifying coagulation factor VIII, by C. Borgvall, U. Ericsson, G. Gilljam, M. Jernberg, and S. Winge. (2009, Dec. 30). International Patent WO2009/156430 [Online]. Available: https://patentimages.storage.googleapis.com/4e/80/26/2021dea5d707ba/WO2009156430A1.pdf
  • [2] A. Coppola, M. Di Capua, M. N. Di Minno, M. Di Palo, E. Marrone, P. Ierano, C. Arturo, A. Tufano, and A. M. Cerbone, “Treatment of hemophilia: a review of current advances and ongoing issues,” Journal of Blood Medicine, vol. 1, pp. 183–195, Aug. 2010
  • [3] M. De Jesus and F. M. Wurm, “Manufacturing recombinant proteins in kg-ton quantities using animal cells in bioreactors,” European Journal of Pharmaceuticals and Biopharmaceutics, vol. 78, no. 2, pp. 184–188, 2011
  • [4] S. Delignat, I. Peyron, M. El Ghazaly, S. V. Kaveri, J. Rohde, F. Mueller, and S. Lacroix-Desmazes, “Biochemical characterization and immunogenicity of Neureight, a recombinant full-length factor VIII produced by fed-batch process in disposable bioreactors,” Cellular Immunology, vol. 331, pp. 22–29, Sep. 2018
  • [5] M. Franchini, “The modern treatment of haemophilia: a narrative review,” Blood Transfusion, vol. 11, no. 2, pp. 178–182, Apr. 2013
  • [6] R. L. Johnson, “Flow cytometry: from research to clinical laboratory applications,” Clinics in Laboratory Medicine, vol. 13, no. 4, pp. 831–852, Dec. 1993
  • [7] A process for isolation and purification of a target protein free of prion protein (PrPSC), by G. Gilljam, M. Jernberg, S. Winge, and A. Neisser-Svae. (2009, Feb. 26). Canada Patent 2696865 A1 [Online]. Available: https://patentimages.storage.googleapis.com/b7/5b/38/ad016994f15964/CA2696865A1.pdf
  • [8] C. S. Kaas, C. Kristensen, J. J. Hansen, G. Bolt, and M. R. Andersen, “Full transcriptome analysis and Chinese hamster ovary cell lines producing a dynamic range of coagulation factor VIII,” in BMC Proceedings, vol. 7, suppl. 6, Dec. 2013, Art. no. P56
  • [9] G. S. Pandey, S. C. Tseng, T. E. Howard, and Z. E. Sauna, “Detection of intracellular factor VIII protein in peripheral blood mononuclear cells by flow cytometry,” Biomed Research International, Feb. 2013, Art. no. 793502
  • [10] J. Puetz and F. M. Wurm, “Recombinant proteins for industrial versus pharmaceutical purposes: a review of process and pricing.” Processes, vol. 7, no. 8, Jul. 2019, Art. no. 476
  • [11] C. A. Sellick, A. R. Maqsood, A. S. Croxford, A. J. Dickson, R. Goodacre, and G. M. Stephens, “Optimizing CHO cell culture conditions,” Genetic Engineering & Biotechnology News, vol. 29, no. 17. Oct. 2009.
  • [12] K. R. Viel, A. Ameri, T. C. Abshire, R. V. Iyer, R. G. Watts, C. Lutcher, C. Channell, and T. E. Howard, “Inhibitors of factor VIII in black patients with hemophilia,” New England Journal of Medicine, vol. 360, no. 16, pp. 1618–1627, Apr. 2009
  • [13] Method for improved isolation of recombinantly produced proteins, by S. Winge. (2006, Oct. 5). International Patent WO 2006/103258 [Online]. Available: https://patentimages.storage.googleapis.com/47/22/50/338eafb2967f5e/WO2006103258A1.pdf
  • [14] A process for manufacturing Factor VIII having an improved ratio of FVIII:C/FVIII:Ag, by S. Winge, M. Dadaian, E. Johansson, and B. Fuchs. (2015, Jul. 23). International Patent WO 2015/0107222 [Online]. Available: https://patentimages.storage.googleapis.com/bf/e6/27/c7ffd1d800dfd7/WO2015107222A1.pdf
  • [15] S. Winge, L. Yderland, C. Kannicht, P. Hermans, S. Adema, T. Schmidt, G. Gilljam, M. Linhult, M. Tiemeyer, L. Belyanskaya, and O. Walter, “Development, upscaling and validation of the purification process for human-cl rhFVIII (Nuwig®), a new generation recombinant factor VIII produced in a human cell-line,” Protein Expression and Purification, vol. 115, Nov. 2015, Art. no. 165-175
  • [16] “Single-use bioprocess containers.” http://assets.thermofisher.com/TFS-Assets/BPD/brochures/bioprocess-containers-brochure.pdf (accessed Oct. 12, 2023).
  • [17] “HyPerforma 5:1 2,000L single-use bioreactor.” http://assets.thermofisher.com/TFS-Assets/BPD/brochures/hyperforma-5-1-single-use-bioreactor-data-sheet-2000L.pdf (accessed Oct. 12, 2023).
  • [18] “2,000 L HyPerforma single-use bioreactor evaluation.” http://assets.thermofisher.com/TFS-Assets/BPD/Application-Notes/single-use-bioreactor-2000l-evaluation-app-note.pdf (accessed Oct. 12, 2023),
  • [19] “NIH Blood Bank.” https://clinicalcenter.nih.gov/blooddonor/aboutus.html (accessed Oct. 12, 2023).
  • [20] “Anti-factor VIII antibody [27.4] (ab41188).” https://www.abcam.com/products/primary-antibodies/factor-viii-antibody-274-ab41188.html (accessed Oct. 12, 2023).
  • [21] “genOway cellular models.” https://www.genoway.com/ (accessed Oct. 12, 2023).
  • [22] “Custom plasmid DNA isolation.” https://lofstrand.com/plasmid-dna-isolation/ (accessed Oct. 12, 2023).
  • [23] “Invitrogen solutions.” https://www.thermofisher.com/us/en/home/brands/invitrogen.html (accessed Oct. 12, 2023).
  • [24] “GenJet in vitro DNA transfection reagent.” https://signagen.com/In-Vitro-DNA-Transfection-Reagents/SL100488/GenJet-In-Vitro-DNA-Transfection-Reagent (accessed Oct. 12, 2023).
  • [25] “FlowJo software platform for single-cell flow cytometry analysis.” https://www.flowjo.com/solutions/flowjo (accessed Oct. 12, 2023).
  • [26] “Single-use bioprocessing market size, share & trends analysis report by product (work equipment, apparatus & plants), by workflow (upstream, downstream), by end-use, by region, and segment forecasts, 2023–2030.” https://www.grandviewresearch.com/industry-analysis/single-use-bioprocessing-market (accessed Oct. 12, 2023).
  • [27] S.A. Fahs, M. T. Hille, Q. Shi, H. Weiler, and R. R. Montgomery, “A conditional knockout mouse model reveals endothelial cells as the principal and possibly exclusive source of plasma factor VIII,” Blood, vol. 123, no. 24, Jun. 2014, Art. no. 3706-13
  • [28] D. E. S. Nogueira, J. M. S. Cabral, C. A. V. Rodrigues, “Single-use bioreactors for human pluripotent and adult stem cells: towards regenerative medicine applications,” Bioengineering (Basel), vol. 8, no. 5, May 2021, Art. no. 68
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Tevfik Gemci 0000-0002-6424-2442

Project Number Not applicable
Publication Date July 31, 2024
Published in Issue Year 2024 Volume: 12 Issue: 3

Cite

APA Gemci, T. (2024). Upstream and Downstream Processes of rFVIII Recombinant Protein Manufacturing in Respect to Fluid Flow, Mixing, Heat and Mass Transfer. Duzce University Journal of Science and Technology, 12(3), 1358-1370. https://doi.org/10.29130/dubited.1300873
AMA Gemci T. Upstream and Downstream Processes of rFVIII Recombinant Protein Manufacturing in Respect to Fluid Flow, Mixing, Heat and Mass Transfer. DUBİTED. July 2024;12(3):1358-1370. doi:10.29130/dubited.1300873
Chicago Gemci, Tevfik. “Upstream and Downstream Processes of RFVIII Recombinant Protein Manufacturing in Respect to Fluid Flow, Mixing, Heat and Mass Transfer”. Duzce University Journal of Science and Technology 12, no. 3 (July 2024): 1358-70. https://doi.org/10.29130/dubited.1300873.
EndNote Gemci T (July 1, 2024) Upstream and Downstream Processes of rFVIII Recombinant Protein Manufacturing in Respect to Fluid Flow, Mixing, Heat and Mass Transfer. Duzce University Journal of Science and Technology 12 3 1358–1370.
IEEE T. Gemci, “Upstream and Downstream Processes of rFVIII Recombinant Protein Manufacturing in Respect to Fluid Flow, Mixing, Heat and Mass Transfer”, DUBİTED, vol. 12, no. 3, pp. 1358–1370, 2024, doi: 10.29130/dubited.1300873.
ISNAD Gemci, Tevfik. “Upstream and Downstream Processes of RFVIII Recombinant Protein Manufacturing in Respect to Fluid Flow, Mixing, Heat and Mass Transfer”. Duzce University Journal of Science and Technology 12/3 (July 2024), 1358-1370. https://doi.org/10.29130/dubited.1300873.
JAMA Gemci T. Upstream and Downstream Processes of rFVIII Recombinant Protein Manufacturing in Respect to Fluid Flow, Mixing, Heat and Mass Transfer. DUBİTED. 2024;12:1358–1370.
MLA Gemci, Tevfik. “Upstream and Downstream Processes of RFVIII Recombinant Protein Manufacturing in Respect to Fluid Flow, Mixing, Heat and Mass Transfer”. Duzce University Journal of Science and Technology, vol. 12, no. 3, 2024, pp. 1358-70, doi:10.29130/dubited.1300873.
Vancouver Gemci T. Upstream and Downstream Processes of rFVIII Recombinant Protein Manufacturing in Respect to Fluid Flow, Mixing, Heat and Mass Transfer. DUBİTED. 2024;12(3):1358-70.