Research Article
BibTex RIS Cite

Reddit Platformu Üzerinden Bilimle İlgili Gönderilerden İlişkili Konu Modelleme Analizi ile Bilim Dünyasının Haritasının Çıkarılması

Year 2024, Volume: 12 Issue: 3, 1664 - 1674, 31.07.2024
https://doi.org/10.29130/dubited.1370614

Abstract

Günümüz dünyasında ulaşılan teknolojinin ana kaynağı bilimdir. Bilim ve teknoloji alanlarındaki çalışmaların devam etmesiyle bilim dünyası her geçen gün yeniden şekillenmektedir. Bununla birlikte, teknolojinin gelişmesi teknolojik platformlardaki geleneksel yöntemlerle işlenemeyen veri miktarının her geçen gün artmasına sebep olmaktadır. Anlamlandırılmamış verinin işlenerek anlamlı hale getirilmesi şirketler, kurum ve kuruluşlar için büyük verinin yüksek oranda fayda sağlayan araçlar haline dönüştürülmesine olanak sağlayacaktır. Verinin işlenerek anlamlı hale getirilmesinde en etkili veri madenciliği tekniklerinden biri konu modellemedir. Bu çalışmada konu modelleme tekniklerinden olan ilişkili konu modelleme (İKM) kullanılarak Reddit platformu üzerinde bilimle ilgili paylaşımların anlamsal içerik analizi yapılmıştır. 2022 yılının ilk dokuz ayına ait Reddit paylaşımlarındaki gizli anlamlar ve bu anlamlar arasındaki korelasyon ortaya koyulmuş ve ilgili sonuçlar paylaşılmıştır. Elde edilen sonuçların bilime ilgili insanlara ve bilim insanlarına araştırmaları için fikir kaynağı olacağı düşünülmektedir.

Supporting Institution

Tubitak

Thanks

The activities carried out in this study were supported by TUBITAK in 2023 as study number 1919B012220329 within the scope of the TUBITAK 2209-A University Students Domestic Research Projects Support Program.

References

  • [1] J. Baumgartner, S. Zannettou, B. Keegan, M. Squire, J. Blackburn and P. Io, “The Pushshift Reddit Dataset”, in Proceedings of the Fourteenth International AAAI Conference on Web and Social Media, Zenodo, 2020.
  • [2] F. Tekin ve A. Turan , "Çalışan kadınların sosyal medya kullanım karakteristikleri", Sakarya Üniversitesi İşletme Enstitüsü Dergisi, c. 2, sayı. 1, ss. 27-32, 2020.
  • [3] U. Yakar (2020). Geniş İçeriği ile Dikkat Çeken Sosyal Platform Reddit Nedir, Ne İşe Yarar, Nasıl Kullanılır? [Çevrimiçi]. Erişim: https://www.webtekno.com/reddit-nedir-ne-ise-yarar-kullanim-h120297.html, 2020. [4] A. Kaya, and E. Gülbandılar, “Konu Modelleme Yöntemlerinin Karşılaştırılması”, Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, c. 3, sayı. 2, ss. 46-53, 2022.
  • [5] Z. Tong and H. Zhang, “A Text Mining Research Based on LDA Topic Modelling”, Computer Science and Informnation Technology, vol. 6, pp. 201–210, 2016.
  • [6] F. Pascual. (2019, September 26). Topic Modeling: An Introduction [Online]. Available: https://monkeylearn.com/blog/introduction-to-topic-modeling/#what-is
  • [7] Y. Peddireddi. (2021, May 1). Topic Modelling in Natural Language Processing [Online]. Available: https://www.analyticsvidhya.com/blog/2021/05/topic-modelling-in-natural-language-processing/
  • [8] S. Li. (2018, May 31). Topic Modeling and Latent Dirichlet Allocation (LDA) in Python [Online]. Available: https://towardsdatascience.com/topic-modeling-and-latent-dirichlet-allocation-in-python-9bf156893c24
  • [9] D. M. Blei and J. D. Lafferty, “A Correlated Topic Model of Science”, The Annals of Applied Statics, vol. 1(1), pp. 17-35, 2007. [10] D. M. Blei and J. D. Lafferty, “Correlated Topic Models” , Advances in Neural Information Processing Systems, vol. 18, 2005.
  • [11] M. K. Oo and M. A. Khine, “Correlated Topic Modeling for Big Data with MapReduce”, in 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE)., Nara, Japan, 2018, pp. 408-409.
  • [12] K. Salomatin, Y. Yang and A. Lad, “Multi-field Correlated Topic Modeling”, in Proceedings of the SIAM International Conference on Data Mining, SDM,. Sparks, Nevada, USA, 2009, pp. 628-637.
  • [13] T. McDermott, J. Robson, N. Winters and L. E. Malmberg, “Mapping the Changing Landscape of Child-Computer Interaction Research Through Correlated Topic Modelling”, in Proceedings of Interaction Design and Children, IDC, Braga, Portugal, 2022, pp. 82–97.
  • [14] X. Xu, A. Shimada and R. I. Taniguchi, “Correlated Topic Model For Image Annotation”, in FCV 2013 - Proceedings of the 19th Korea-Japan Joint Workshop on Frontiers of Computer Vision, 2013, pp. 201–208.
  • [15] J. He, Z. Hu, T. Berg-Kirkpatrick, Y. Huang and E. P. Xing, “Efficient Correlated Topic Modeling With Topic Embedding”, in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, vol. Part F129685, pp. 225–233.
  • [16] S. Daenekindt and J. Huisman, “Mapping the Scattered Field of Research on Higher Education”, High Educ, vol. 80, pp. 571–587, 2020.
  • [17] T. P. Dybowski and P. Adämmer, “The Economic Effects of U.S. Presedental Tax Commucation: Evidence From A Correlated Topic Model”, European Journal of Political Economy, vol. 55, pp. 511-525, 2018.
  • [18] H. Tu, L. Xia & Z. Wang, “The Complex Action Recognition via Correlated Topic Model”, Scientific World Journal, vol. 2014, 2014.
  • [19] M. Aznag, M. Quafafou and Z. Jarir, “Correlated Topic Model For Web Services Ranking”, International Journal of Advanced Computer Science and Applications, vol. 4, pp. 283-291, 2013.

Mapping the Science World with Correlated Topic Modeling Analysis from Science-Related Posts on the Reddit Platform

Year 2024, Volume: 12 Issue: 3, 1664 - 1674, 31.07.2024
https://doi.org/10.29130/dubited.1370614

Abstract

The main source of technology in today's world is science. The world of science is being reshaped every day with the continuation of studies in the fields of science and technology. However, the development of technology causes the amount of data that cannot be processed with traditional methods on technological platforms to increase day by day. Making meaningful data meaningful by processing unmeaningful data will enable companies, institutions, and organizations to transform big data into highly beneficial tools. One of the most effective data mining techniques for processing and making sense of data is topic modeling. In this study, semantic content analysis of science-related posts on the Reddit platform was conducted using corelated topic modeling (CTM), one of the topic modeling techniques. In the first nine months of 2022, the hidden meanings in Reddit posts and the correlation between these meanings were revealed, and the relevant results were shared. It is thought that the results obtained will be a source of ideas for people interested in science and scientists for their research.

References

  • [1] J. Baumgartner, S. Zannettou, B. Keegan, M. Squire, J. Blackburn and P. Io, “The Pushshift Reddit Dataset”, in Proceedings of the Fourteenth International AAAI Conference on Web and Social Media, Zenodo, 2020.
  • [2] F. Tekin ve A. Turan , "Çalışan kadınların sosyal medya kullanım karakteristikleri", Sakarya Üniversitesi İşletme Enstitüsü Dergisi, c. 2, sayı. 1, ss. 27-32, 2020.
  • [3] U. Yakar (2020). Geniş İçeriği ile Dikkat Çeken Sosyal Platform Reddit Nedir, Ne İşe Yarar, Nasıl Kullanılır? [Çevrimiçi]. Erişim: https://www.webtekno.com/reddit-nedir-ne-ise-yarar-kullanim-h120297.html, 2020. [4] A. Kaya, and E. Gülbandılar, “Konu Modelleme Yöntemlerinin Karşılaştırılması”, Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, c. 3, sayı. 2, ss. 46-53, 2022.
  • [5] Z. Tong and H. Zhang, “A Text Mining Research Based on LDA Topic Modelling”, Computer Science and Informnation Technology, vol. 6, pp. 201–210, 2016.
  • [6] F. Pascual. (2019, September 26). Topic Modeling: An Introduction [Online]. Available: https://monkeylearn.com/blog/introduction-to-topic-modeling/#what-is
  • [7] Y. Peddireddi. (2021, May 1). Topic Modelling in Natural Language Processing [Online]. Available: https://www.analyticsvidhya.com/blog/2021/05/topic-modelling-in-natural-language-processing/
  • [8] S. Li. (2018, May 31). Topic Modeling and Latent Dirichlet Allocation (LDA) in Python [Online]. Available: https://towardsdatascience.com/topic-modeling-and-latent-dirichlet-allocation-in-python-9bf156893c24
  • [9] D. M. Blei and J. D. Lafferty, “A Correlated Topic Model of Science”, The Annals of Applied Statics, vol. 1(1), pp. 17-35, 2007. [10] D. M. Blei and J. D. Lafferty, “Correlated Topic Models” , Advances in Neural Information Processing Systems, vol. 18, 2005.
  • [11] M. K. Oo and M. A. Khine, “Correlated Topic Modeling for Big Data with MapReduce”, in 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE)., Nara, Japan, 2018, pp. 408-409.
  • [12] K. Salomatin, Y. Yang and A. Lad, “Multi-field Correlated Topic Modeling”, in Proceedings of the SIAM International Conference on Data Mining, SDM,. Sparks, Nevada, USA, 2009, pp. 628-637.
  • [13] T. McDermott, J. Robson, N. Winters and L. E. Malmberg, “Mapping the Changing Landscape of Child-Computer Interaction Research Through Correlated Topic Modelling”, in Proceedings of Interaction Design and Children, IDC, Braga, Portugal, 2022, pp. 82–97.
  • [14] X. Xu, A. Shimada and R. I. Taniguchi, “Correlated Topic Model For Image Annotation”, in FCV 2013 - Proceedings of the 19th Korea-Japan Joint Workshop on Frontiers of Computer Vision, 2013, pp. 201–208.
  • [15] J. He, Z. Hu, T. Berg-Kirkpatrick, Y. Huang and E. P. Xing, “Efficient Correlated Topic Modeling With Topic Embedding”, in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, vol. Part F129685, pp. 225–233.
  • [16] S. Daenekindt and J. Huisman, “Mapping the Scattered Field of Research on Higher Education”, High Educ, vol. 80, pp. 571–587, 2020.
  • [17] T. P. Dybowski and P. Adämmer, “The Economic Effects of U.S. Presedental Tax Commucation: Evidence From A Correlated Topic Model”, European Journal of Political Economy, vol. 55, pp. 511-525, 2018.
  • [18] H. Tu, L. Xia & Z. Wang, “The Complex Action Recognition via Correlated Topic Model”, Scientific World Journal, vol. 2014, 2014.
  • [19] M. Aznag, M. Quafafou and Z. Jarir, “Correlated Topic Model For Web Services Ranking”, International Journal of Advanced Computer Science and Applications, vol. 4, pp. 283-291, 2013.
There are 17 citations in total.

Details

Primary Language English
Subjects Machine Learning Algorithms
Journal Section Articles
Authors

Merve Yalçın This is me 0009-0003-2797-784X

Semanur Gürsoy 0009-0004-7615-8135

Özcan Özyurt 0000-0002-0047-6813

Publication Date July 31, 2024
Published in Issue Year 2024 Volume: 12 Issue: 3

Cite

APA Yalçın, M., Gürsoy, S., & Özyurt, Ö. (2024). Mapping the Science World with Correlated Topic Modeling Analysis from Science-Related Posts on the Reddit Platform. Duzce University Journal of Science and Technology, 12(3), 1664-1674. https://doi.org/10.29130/dubited.1370614
AMA Yalçın M, Gürsoy S, Özyurt Ö. Mapping the Science World with Correlated Topic Modeling Analysis from Science-Related Posts on the Reddit Platform. DUBİTED. July 2024;12(3):1664-1674. doi:10.29130/dubited.1370614
Chicago Yalçın, Merve, Semanur Gürsoy, and Özcan Özyurt. “Mapping the Science World With Correlated Topic Modeling Analysis from Science-Related Posts on the Reddit Platform”. Duzce University Journal of Science and Technology 12, no. 3 (July 2024): 1664-74. https://doi.org/10.29130/dubited.1370614.
EndNote Yalçın M, Gürsoy S, Özyurt Ö (July 1, 2024) Mapping the Science World with Correlated Topic Modeling Analysis from Science-Related Posts on the Reddit Platform. Duzce University Journal of Science and Technology 12 3 1664–1674.
IEEE M. Yalçın, S. Gürsoy, and Ö. Özyurt, “Mapping the Science World with Correlated Topic Modeling Analysis from Science-Related Posts on the Reddit Platform”, DUBİTED, vol. 12, no. 3, pp. 1664–1674, 2024, doi: 10.29130/dubited.1370614.
ISNAD Yalçın, Merve et al. “Mapping the Science World With Correlated Topic Modeling Analysis from Science-Related Posts on the Reddit Platform”. Duzce University Journal of Science and Technology 12/3 (July 2024), 1664-1674. https://doi.org/10.29130/dubited.1370614.
JAMA Yalçın M, Gürsoy S, Özyurt Ö. Mapping the Science World with Correlated Topic Modeling Analysis from Science-Related Posts on the Reddit Platform. DUBİTED. 2024;12:1664–1674.
MLA Yalçın, Merve et al. “Mapping the Science World With Correlated Topic Modeling Analysis from Science-Related Posts on the Reddit Platform”. Duzce University Journal of Science and Technology, vol. 12, no. 3, 2024, pp. 1664-7, doi:10.29130/dubited.1370614.
Vancouver Yalçın M, Gürsoy S, Özyurt Ö. Mapping the Science World with Correlated Topic Modeling Analysis from Science-Related Posts on the Reddit Platform. DUBİTED. 2024;12(3):1664-7.