Research Article
BibTex RIS Cite

TDMA Tabanlı Bilişsel Radyo Ağının Farklı Zaman Dilimi Tahsis Stratejileri için Modellenmesi, Simülasyonu ve Çağrı Performans Analizi

Year 2024, Volume: 12 Issue: 3, 1675 - 1691, 31.07.2024
https://doi.org/10.29130/dubited.1371639

Abstract

Kablosuz spektrum sınırlı olduğundan lisanslı kanalların ikincil amaçlarla kullanılması spektrum kıtlığı
sorununa önemli bir çözüm olarak görülmektedir. Bu makalede sunulan çalışmanın amacı, ikincil
kullanıcıların birincil ağın mevcut spektrum boşluklarını fırsatçı olarak kullandığı bir bilişsel radyo ağını
modellemek, geliştirmek ve analiz etmektir. Önerilen ağ modelinde, birincil kullanıcıların lisanslı
kullanıcılar olduğu ve kanala erişimde ikincil kullanıcılara göre daha yüksek önceliğe sahip oldukları
ve dolayısıyla ikincil kullanıcıların kanal kullanımından etkilenmedikleri varsayılmaktadır. Birincil kullanıcılar kanal erişim mekanizması olarak Zaman Bölmeli Çoklu Erişimi tekniğini, ikincil
kullanıcılar ise birincil kullanıcılar tarafından kullanılmayan zaman aralıklarını kullanmaktadır. Bilişsel
Radyo ağı için üç slot tahsis stratejisi: spektrum el-değiştirmesiz slot-tahsis stratejisi, spektrum el-
değiştirmeli slot-tahsis stratejisi ve slot-rezervasyon stratejisi Riverbed Modeler benzetim yazılımı
kullanılarak geliştirilmiş, modellenmiş ve benzetimi gerçekleştirilmiştir. Ayrıca bu üç stratejinin çağrı
bloke, çağrı düşme ve çağrı el-değiştirme olasılıkları açısından kanal erişim başarımları analiz edilmiştir.
Kapsamlı benzetim sonuçlarına göre, spektrum el-değiştirmesiz slot-tahsis stratejisi en düşük çağrı
bloke olasılığı, slot-rezervasyon stratejisi en düşük çağrı düşme olasılığı vermektedir. İkincil kullanıcı
yükü 0,05 olduğunda, slot-rezervasyon stratejisi, spektrum el-değiştirmeli slot-tahsis stratejisine göre
1,75 kat daha iyi çağrı düşme olasılığı sonuçları vermiştir. Bununla birlikte, sunulan aynı yük için,
spektrum el-değiştirmesiz slot-tahsis stratejisi, slot-rezervasyon stratejisi ile karşılaştırıldığında 2,26 kat
daha iyi çağrı bloke olasılığı sonuçları vermektedir.

References

  • [1]. Mitola J., et al., “Cognitive radio: making software radios more personal”, IEEE Personal Communications, vol. 6, no. 4, pp. 13‒18, 1999.
  • [2]. Haykin S, “Cognitive radio: brain‒empowered wireless communications”, IEEE J. Selected Areas Communication, 23 (2), pp. 201–220, 2005.
  • [3]. Peha J. M., “Approaches to spectrum sharing”, IEEE Communications Magazine, Regulatory and Policy Issues, pp. 10‒12, 2005.
  • [4]. Zareei M, Islam AKMM, Baharun S, Vargas-Rosales C, Azpilicueta L, Mansoor N. “Medium Access Control Protocols for Cognitive Radio Ad Hoc Networks: A Survey”, Sensors (Basel), 2017 Sep 16;17(9):2136. doi: 10.3390/s17092136.
  • [5]. Sridhara K., Chandra A., Tripathi P.S.M, “Spectrum Challenges and Solutions by Cognitive Radio: An Overview,” Wireless Personal Communications, vol. 45, pp. 281-291, 2008.
  • [6]. Zhonggui M., Hongbo W., “Dynamic Spectrum Allocation with Maximum Efficiency and Fairness in Interactive Cognitive Radio Networks”, Wireless Personal Communications, vol. 64, pp. 439-455, 2012.
  • [7]. Zhao Q., and Sadler B., “A survey of dynamic spectrum access,” IEEE Signal Process. Mag., vol. 24, no. 3, pp. 79–89, 2007.
  • [8]. Al Attal, A., Hussin, S. & Fouad, M. Performance Analysis of Different Channel Allocation Schemes of Random Access (RA) MAC Protocol with Back-Off Algorithm (BOA). Wireless Personal Communications, 112, 1981–1993, 2020.
  • [9]. Verdone R., Dardari D., Mazzini G., Conti A., “Wireless Sensor And Actuator Networks; Technologies Analysis And Design”, Elsevier, London, 2008.
  • [10]. T. -C. Chen, T. -S. Chen and P. -W. Wu, "On Data Collection Using Mobile Robot in Wireless Sensor Networks," in IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 41, no. 6, pp. 1213-1224, Nov. 2011, doi: 10.1109/TSMCA.2011.2157132.
  • [11]. Akyildiz I., Lee W-Y. and Chowdhury K.R., CRAHNs: Cognitive Radio Ad Hoc Networks, Ad Hoc Networks, Elsevier, doi: 10.1016/j.adhoc.2009.01.001, 2009
  • [12]. P. K. Tang, Y. H. Chew, L. C. Ong and M. K. Haldar, "Performance of Secondary Radios in Spectrum Sharing with Prioritized Primary Access," MILCOM 2006 - 2006 IEEE Military Communications Conference, Washington, DC, USA, 2006, pp. 1-7, doi: 10.1109/MILCOM.2006.302214.
  • [13]. Y. Kondareddy, N. Andrews and P. Agrawal, "On the capacity of secondary users in a cognitive radio network", Proc. IEEE SARNOFF Symp., pp. 1-5, 2009.
  • [14]. Hassani, Mohammad Mehdi and Berangi, Reza, “Impact of the primary user on the secondary user blocking probability in cognitive radio sensor networks,” Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 27: No. 3, 2019.
  • [15]. Osama Salameh, Herwig Bruneel, Sabine Wittevrongel, “Performance Evaluation of Cognitive Radio Networks with Imperfect Spectrum Sensing and Bursty Primary User Traffic”, Mathematical Problems in Engineering, vol. 2020, Article ID 4102046, 11 pages, 2020.
  • [16]. Salameh, O., De Turck, K., Bruneel, H. et al. "Analysis of secondary user performance in cognitive radio networks with reactive spectrum handoff", Telecommunication Systems, 65, pp. 539–550, 2017.
  • [17]. Chu TMC, Phan H, Zepernick HJ, “Dynamic spectrum access for cognitive radio networks with prioritized traffics”. IEEE Communications Letters 18(7): pp. 1218–1221, 2014.
  • [18]. Park, JH., Chung, JM. “Prioritized channel allocation-based dynamic spectrum access in cognitive radio sensor networks without spectrum handoff.”, Journal on Wireless Communications and Networking, 266, 2016.
  • [19]. Jee, A., Hoque, S. & Arif, W., “Performance analysis of secondary users under heterogeneous licensed spectrum environment in cognitive radio ad hoc networks”, Annals of Telecommunications, 75, 407–419, 2020.
  • [20]. Sedat Atmaca, Alper Karahan, Celal Ceken, Ismail Erturk, “A New MAC Protocol for Broadband Wireless Communications and Its Performance Evaluation”, Telecommunication Systems, 57(1), 13-23, 2014.
  • [21]. A. Karahan, I. Erturk, S. Atmaca, S. Cakici, “Effects of Transmit−based and Receive−based Slot Allocation Strategies on Energy Efficiency in WSN MACs”, Ad Hoc Networks, 13 (Part B), 404-413, 2014.
  • [22]. Tijms, H. C. A First Course in Stochastic Models. Wiley, 2003.
  • [23]. El Azaly, N.M., Badran, E.F., “Performance Enhancement of Dynamic Spectrum Access via Channel Reservation for Cognitive Radio Networks”, Wireless Personal Communications, vol.118, pp.2867–2883, 2021, https://doi.org/10.1007/s11277-021-08159-y.
  • [24]. A. U. Khan, G. Abbas, Z. H. Abbas, W. U. Khan, and M. Waqas, “Spectrum utilization efficiency in CRNs with hybrid spectrum access and channel reservation: A comprehensive analysis under prioritized traffic,” Future Generation Computer Systems, vol.125, pp.726–742, 2021, https://doi.org/10.1016/j.future.2021.07.024.
  • [25]. Kumar, P.T.V., Naidu, K.V., Reddy, P.V. et al. “Performance Analysis of Pool-Based Spectrum Handoff in Cognitive Radio Networks”, Wireless Personal Communications, vol.131, pp.489–506, 2023, https://doi.org/10.1007/s11277-023-10441-0.

Modeling, Simulation and Call Performance Analysis of a TDMA- Based Cognitive Radio Network with Different Slot Allocation Strategies

Year 2024, Volume: 12 Issue: 3, 1675 - 1691, 31.07.2024
https://doi.org/10.29130/dubited.1371639

Abstract

Since the wireless spectrum is limited, the use of licensed channels for secondary purposes is seen as an
important solution to the spectrum scarcity problem. The objective of the work presented in this paper
is to model, develop and analyze a cognitive radio network in which secondary users (SUs) utilize
opportunistically available spectrum holes of the primary network. In the proposed network model, it is
assumed that primary users (PUs) are licensed users and have a higher priority in access to the channel
than secondary users and thereby are unaffected by the SUs’ channel utilization. PUs employ Time
Division Multiple Access as a channel access mechanism and secondary users use the time slots
unoccupied by the PUs. Three slot allocation strategies for Cognitive Radio (CR) networks: non-slot-
handoff strategy, slot-handoff strategy, and slot-reservation strategy are developed, modeled, and
simulated by using Riverbed Modeler simulation software. Moreover, channel access performances of
these three strategies in terms of call block, call drop and call handoff probabilities are analyzed.
According to the extensive simulation results, the non-slot-handoff strategy gives the lowest call block
probability while the slot-reservation strategy provides the lowest call drop probability. When the SUs’
offered load is 0.05, the slot-reservation strategy gives 1.75 times better call drop probability results
than those of the slot-handoff strategy. However, for the same offered load, the non-slot-handoff strategy
gives 2.26 times better call block probability results compared to the slot-reservation strategy.

References

  • [1]. Mitola J., et al., “Cognitive radio: making software radios more personal”, IEEE Personal Communications, vol. 6, no. 4, pp. 13‒18, 1999.
  • [2]. Haykin S, “Cognitive radio: brain‒empowered wireless communications”, IEEE J. Selected Areas Communication, 23 (2), pp. 201–220, 2005.
  • [3]. Peha J. M., “Approaches to spectrum sharing”, IEEE Communications Magazine, Regulatory and Policy Issues, pp. 10‒12, 2005.
  • [4]. Zareei M, Islam AKMM, Baharun S, Vargas-Rosales C, Azpilicueta L, Mansoor N. “Medium Access Control Protocols for Cognitive Radio Ad Hoc Networks: A Survey”, Sensors (Basel), 2017 Sep 16;17(9):2136. doi: 10.3390/s17092136.
  • [5]. Sridhara K., Chandra A., Tripathi P.S.M, “Spectrum Challenges and Solutions by Cognitive Radio: An Overview,” Wireless Personal Communications, vol. 45, pp. 281-291, 2008.
  • [6]. Zhonggui M., Hongbo W., “Dynamic Spectrum Allocation with Maximum Efficiency and Fairness in Interactive Cognitive Radio Networks”, Wireless Personal Communications, vol. 64, pp. 439-455, 2012.
  • [7]. Zhao Q., and Sadler B., “A survey of dynamic spectrum access,” IEEE Signal Process. Mag., vol. 24, no. 3, pp. 79–89, 2007.
  • [8]. Al Attal, A., Hussin, S. & Fouad, M. Performance Analysis of Different Channel Allocation Schemes of Random Access (RA) MAC Protocol with Back-Off Algorithm (BOA). Wireless Personal Communications, 112, 1981–1993, 2020.
  • [9]. Verdone R., Dardari D., Mazzini G., Conti A., “Wireless Sensor And Actuator Networks; Technologies Analysis And Design”, Elsevier, London, 2008.
  • [10]. T. -C. Chen, T. -S. Chen and P. -W. Wu, "On Data Collection Using Mobile Robot in Wireless Sensor Networks," in IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 41, no. 6, pp. 1213-1224, Nov. 2011, doi: 10.1109/TSMCA.2011.2157132.
  • [11]. Akyildiz I., Lee W-Y. and Chowdhury K.R., CRAHNs: Cognitive Radio Ad Hoc Networks, Ad Hoc Networks, Elsevier, doi: 10.1016/j.adhoc.2009.01.001, 2009
  • [12]. P. K. Tang, Y. H. Chew, L. C. Ong and M. K. Haldar, "Performance of Secondary Radios in Spectrum Sharing with Prioritized Primary Access," MILCOM 2006 - 2006 IEEE Military Communications Conference, Washington, DC, USA, 2006, pp. 1-7, doi: 10.1109/MILCOM.2006.302214.
  • [13]. Y. Kondareddy, N. Andrews and P. Agrawal, "On the capacity of secondary users in a cognitive radio network", Proc. IEEE SARNOFF Symp., pp. 1-5, 2009.
  • [14]. Hassani, Mohammad Mehdi and Berangi, Reza, “Impact of the primary user on the secondary user blocking probability in cognitive radio sensor networks,” Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 27: No. 3, 2019.
  • [15]. Osama Salameh, Herwig Bruneel, Sabine Wittevrongel, “Performance Evaluation of Cognitive Radio Networks with Imperfect Spectrum Sensing and Bursty Primary User Traffic”, Mathematical Problems in Engineering, vol. 2020, Article ID 4102046, 11 pages, 2020.
  • [16]. Salameh, O., De Turck, K., Bruneel, H. et al. "Analysis of secondary user performance in cognitive radio networks with reactive spectrum handoff", Telecommunication Systems, 65, pp. 539–550, 2017.
  • [17]. Chu TMC, Phan H, Zepernick HJ, “Dynamic spectrum access for cognitive radio networks with prioritized traffics”. IEEE Communications Letters 18(7): pp. 1218–1221, 2014.
  • [18]. Park, JH., Chung, JM. “Prioritized channel allocation-based dynamic spectrum access in cognitive radio sensor networks without spectrum handoff.”, Journal on Wireless Communications and Networking, 266, 2016.
  • [19]. Jee, A., Hoque, S. & Arif, W., “Performance analysis of secondary users under heterogeneous licensed spectrum environment in cognitive radio ad hoc networks”, Annals of Telecommunications, 75, 407–419, 2020.
  • [20]. Sedat Atmaca, Alper Karahan, Celal Ceken, Ismail Erturk, “A New MAC Protocol for Broadband Wireless Communications and Its Performance Evaluation”, Telecommunication Systems, 57(1), 13-23, 2014.
  • [21]. A. Karahan, I. Erturk, S. Atmaca, S. Cakici, “Effects of Transmit−based and Receive−based Slot Allocation Strategies on Energy Efficiency in WSN MACs”, Ad Hoc Networks, 13 (Part B), 404-413, 2014.
  • [22]. Tijms, H. C. A First Course in Stochastic Models. Wiley, 2003.
  • [23]. El Azaly, N.M., Badran, E.F., “Performance Enhancement of Dynamic Spectrum Access via Channel Reservation for Cognitive Radio Networks”, Wireless Personal Communications, vol.118, pp.2867–2883, 2021, https://doi.org/10.1007/s11277-021-08159-y.
  • [24]. A. U. Khan, G. Abbas, Z. H. Abbas, W. U. Khan, and M. Waqas, “Spectrum utilization efficiency in CRNs with hybrid spectrum access and channel reservation: A comprehensive analysis under prioritized traffic,” Future Generation Computer Systems, vol.125, pp.726–742, 2021, https://doi.org/10.1016/j.future.2021.07.024.
  • [25]. Kumar, P.T.V., Naidu, K.V., Reddy, P.V. et al. “Performance Analysis of Pool-Based Spectrum Handoff in Cognitive Radio Networks”, Wireless Personal Communications, vol.131, pp.489–506, 2023, https://doi.org/10.1007/s11277-023-10441-0.
There are 25 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Articles
Authors

Sedat Atmaca 0000-0003-0229-4893

Publication Date July 31, 2024
Published in Issue Year 2024 Volume: 12 Issue: 3

Cite

APA Atmaca, S. (2024). Modeling, Simulation and Call Performance Analysis of a TDMA- Based Cognitive Radio Network with Different Slot Allocation Strategies. Duzce University Journal of Science and Technology, 12(3), 1675-1691. https://doi.org/10.29130/dubited.1371639
AMA Atmaca S. Modeling, Simulation and Call Performance Analysis of a TDMA- Based Cognitive Radio Network with Different Slot Allocation Strategies. DUBİTED. July 2024;12(3):1675-1691. doi:10.29130/dubited.1371639
Chicago Atmaca, Sedat. “Modeling, Simulation and Call Performance Analysis of a TDMA- Based Cognitive Radio Network With Different Slot Allocation Strategies”. Duzce University Journal of Science and Technology 12, no. 3 (July 2024): 1675-91. https://doi.org/10.29130/dubited.1371639.
EndNote Atmaca S (July 1, 2024) Modeling, Simulation and Call Performance Analysis of a TDMA- Based Cognitive Radio Network with Different Slot Allocation Strategies. Duzce University Journal of Science and Technology 12 3 1675–1691.
IEEE S. Atmaca, “Modeling, Simulation and Call Performance Analysis of a TDMA- Based Cognitive Radio Network with Different Slot Allocation Strategies”, DUBİTED, vol. 12, no. 3, pp. 1675–1691, 2024, doi: 10.29130/dubited.1371639.
ISNAD Atmaca, Sedat. “Modeling, Simulation and Call Performance Analysis of a TDMA- Based Cognitive Radio Network With Different Slot Allocation Strategies”. Duzce University Journal of Science and Technology 12/3 (July 2024), 1675-1691. https://doi.org/10.29130/dubited.1371639.
JAMA Atmaca S. Modeling, Simulation and Call Performance Analysis of a TDMA- Based Cognitive Radio Network with Different Slot Allocation Strategies. DUBİTED. 2024;12:1675–1691.
MLA Atmaca, Sedat. “Modeling, Simulation and Call Performance Analysis of a TDMA- Based Cognitive Radio Network With Different Slot Allocation Strategies”. Duzce University Journal of Science and Technology, vol. 12, no. 3, 2024, pp. 1675-91, doi:10.29130/dubited.1371639.
Vancouver Atmaca S. Modeling, Simulation and Call Performance Analysis of a TDMA- Based Cognitive Radio Network with Different Slot Allocation Strategies. DUBİTED. 2024;12(3):1675-91.