Research Article
BibTex RIS Cite

Karşıt Akışlı Ranque-Hilsch Vorteks Tüpü Performansının İstatistiksel Değerlendirmesi

Year 2024, Volume: 12 Issue: 3, 1489 - 1505, 31.07.2024
https://doi.org/10.29130/dubited.1384832

Abstract

Basit bir borudan oluşan vorteks tüp, çevre dostu basınçlı akışkanlar ( hava, oksijen, azot vb.,) sayesinde aynı anda ısıtma ve soğutma yapabilen bir cihazdır. Ranque-Hilsch Vortex tüpünün performansını değerlendirmek ve etkileyen faktörleri ortaya çıkarmak için literatürde birçok çalışmaya yer verilmiştir. Uygulamada öncelikle varyans analizi, doğrusal regresyon analizi ve Taguchi yöntemi kullanılmaktadır. Bu çalışma, Ranque-Hilsch Vortex tüpünün ısı değişimini etkileyen faktörlerin istatistiksel değerlendirmesinde faktöriyel deney tasarımı ile Taguchi ortogonal dizi tasarımının güçlü ve zayıf yönlerini karşılaştırmayı amaçlamıştır. Bu amaçla Ranque-Hilsch Vortex tüpü ve etkin malzeme tipi ( polyamid, çelik, pirinç ve alüminyum), nozül sayısı (2,3,4,5 ve 6) ve giriş basıncı parametrelerini (1,5-7 bar) içeren veri setine (4 x 5 x 12 = 240 deney) uygun faktöriyel ANOVA modeli için detaylı bir teori oluşturulmuştur. Tüm ikili etkileşimleri içeren faktöriyel ANOVA çözümü sonrasında her malzeme, nozül ve basınç için dört seviye dikkate alınarak en uygun L16 Taguchi Ortogonal dizisine göre bulgular elde edilmiştir. ANOVA sonucunda tüm parametreler ısı değişimi açısından istatistiksel olarak anlamlı bulunmuştur (p < 0,001). Öte yandan Taguchi analizine göre istatistiksel olarak anlamlı olan tek faktörün basınç olduğu elde edilmiştir (F=35,17, p=0,008). Test bulguları ve grafik performansları dikkate alınarak iki yöntemin avantaj ve dezavantajları karşılaştırılmıştır.

References

  • [1] A. M. Pinar, O. Uluer, and V. Kırmacı, "Statistical assessment of counterflow vortex tube performance for different nozzle numbers, cold mass fractions, and inlet pressures via taguchi method," Exp. Heat Transf., vol. 22, no. 4, pp. 271–282, 2009, doi: 10.1080/08916150903099058.
  • [2] H. Kaya, O. Uluer, E. Kocaoğlu, and V. Kirmaci, "Experimental analysis of cooling and heating performance of serial and parallel connected counterflow Ranquee–Hilsch vortex tube systems using carbon dioxide as a working fluid," Int. J. Refrig., vol. 106, pp. 297–307, 2019, doi: 10.1016/j.ijrefrig.2019.07.004.
  • [3] H. Gökçe, "Optimization of Ranque–Hilsch vortex tube performances via Taguchi method," J. Brazilian Soc. Mech. Sci. Eng., vol. 42, no. 11, 2020, doi: 10.1007/s40430-020-02649-z.
  • [4] K. Dincer, S. Baskaya, B. Z. Uysal, and I. Ucgul, "Experimental investigation of the performance of a Ranque-Hilsch vortex tube with regard to a plug located at the hot outlet," Int. J. Refrig., vol. 32, no. 1, pp. 87–94, 2009, doi: 10.1016/j.ijrefrig.2008.06.002.
  • [5] W. Fröhlingsdorf and H. Unger, "Numerical investigations of the compressible flow and the energy separation in the Ranque-Hilsch vortex tube," Int. J. Heat Mass Transf., vol. 42, no. 3, pp. 415–422, 1998, doi: 10.1016/S0017-9310(98)00191-4.
  • [6] M. Korkmaz, A. Dogan, and V. Kırmacı, "Performance Analysis of Counterflow Ranque – Hilsch Vortex Tube with Linear Regression, Support Vector Machines and Gaussian Process Regression Method," Gazi J. Eng. Sci., vol. 8, no. 2, pp. 361–370, 2022, doi: doi:10.30855/gmbd.0705015.
  • [7] T. Dutta, K. P. Sinhamahapatra, and S. S. Bandyopadhyay, "Numerical investigation of gas species and energy separation in the Ranque-Hilsch vortex tube using real gas model," Int. J. Refrig., vol. 34, no. 8, pp. 2118–2128, 2011, doi: 10.1016/j.ijrefrig.2011.06.004.
  • [8] M. Bovand, M. S. Valipour, K. Dincer, and A. Tamayol, "Numerical analysis of the curvature effects on Ranque-Hilsch vortex tube refrigerators," Appl. Therm. Eng., vol. 65, no. 1–2, pp. 176–183, 2014, doi: 10.1016/j.applthermaleng.2013.11.045.
  • [9] X. Han et al., "The influence of working gas characteristics on energy separation of vortex tube," Appl. Therm. Eng., vol. 61, no. 2, pp. 171–177, 2013, doi: 10.1016/j.applthermaleng.2013.07.027.
  • [10] R. Shamsoddini and A. H. Nezhad, "Numerical analysis of the effects of nozzles number on the flow and power of cooling of a vortex tube," Int. J. Refrig., vol. 33, no. 4, pp. 774–782, 2010, doi: 10.1016/j.ijrefrig.2009.12.029.
  • [11] S. Eiamsa-ard, "Experimental investigation of energy separation in a counterflow Ranque-Hilsch vortex tube with multiple inlet snail entries," Int. Commun. Heat Mass Transf., vol. 37, no. 6, pp. 637–643, 2010, doi: 10.1016/j.icheatmasstransfer.2010.02.007.
  • [12] Y. Xue, M. Arjomandi, and R. Kelso, "Energy analysis within a vortex tube," Exp. Therm. Fluid Sci., vol. 52, pp. 139–145, 2014, doi: 10.1016/j.expthermflusci.2013.09.004.
  • [13] Y. Xue, M. Arjomandi, and R. Kelso, "Experimental study of the thermal separation in a vortex tube," Exp. Therm. Fluid Sci., vol. 46, pp. 175–182, 2013, doi: 10.1016/j.expthermflusci.2012.12.009.
  • [14] A. V. Khait, A. S. Noskov, A. V. Lovtsov, and V. N. Alekhin, "Semi-empirical turbulence model for numerical simulation of swirled compressible flows observed in Ranque-Hilsch vortex tube," Int. J. Refrig., vol. 48, pp. 132–141, 2014, doi: 10.1016/j.ijrefrig.2014.09.006.
  • [15] H. A. Kandil and S. T. Abdelghany, "Computational investigation of different effects on the performance of the Ranque-Hilsch vortex tube," Energy, vol. 84, pp. 207–218, 2015, doi: 10.1016/j.energy.2015.02.089.
  • [16] S. Mohammadi and F. Farhadi, "Experimental and numerical study of the gas-gas separation efficiency in a Ranque-Hilsch vortex tube," Sep. Purif. Technol., vol. 138, pp. 177–185, 2014, doi: 10.1016/j.seppur.2014.10.022.
  • [17] M. Korkmaz, A. Binal, H. Kaya, and V. Kırmacı, "ANN based ternary diagrams for thermal performance of a Ranque Hilsch vortex tube with different working fluids," Therm. Sci. Eng. Prog., vol. 40, no. October 2022, p. 101803, 2023, doi: 10.1016/j.tsep.2023.101803.
  • [18] Bethea RM., Statistical methods for engineers and scientists. CRC Press, 2018.
  • [19] P. Valcheva, "Some combinatorial structures in experimental design: overview, statistical models and applications," Biometrics Biostat. Int. J., vol. 7, no. 4, 2018, doi: 10.15406/bbij.2018.07.00228.
  • [20] H. Pouraria and M. R. Zangooee, "Numerical investigation of vortex tube refrigerator with a divergent hot tube," Energy Procedia, vol. 14, no. 2011, pp. 1554–1559, 2012, doi: 10.1016/j.egypro.2011.12.1132.
  • [21] A. M. Pinar, O. Uluer, and V. Kirmaci, "Optimization of counter flow Ranque-Hilsch vortex tube performance using Taguchi method," Int. J. Refrig., vol. 32, no. 6, pp. 1487–1494, 2009, doi: 10.1016/j.ijrefrig.2009.02.018.
  • [22] H. Gokce, "Evaluation and Optimization of O2 Used Ranque-Hilsch Vortex Tube Performance," Energy Sources, Part A Recover. Util. Environ. Eff., vol. 43, no. 13, pp. 1566–1576, 2021, doi: 10.1080/15567036.2020.1817188.
  • [23] T. Madani, M. Boukraa, M. Aissani, T. Chekifi, A. Ziadi, and M. Zirari, "Experimental investigation and numerical analysis using Taguchi and ANOVA methods for underwater friction stir welding of aluminium alloy 2017 process improvement," Int. J. Press. Vessel. Pip., vol. 201, no. December 2022, p. 104879, 2023, doi: 10.1016/j.ijpvp.2022.104879.

Statistical Assessment of Counterflow Ranque-Hilsch Vortex Tube Performance

Year 2024, Volume: 12 Issue: 3, 1489 - 1505, 31.07.2024
https://doi.org/10.29130/dubited.1384832

Abstract

The vortex tube, which consists of a simple tube, is a device that can simultaneously heat and cool thanks to environmentally friendly pressurized fluids (air, oxygen, nitrogen, etc.). Many studies have been included in the literature to evaluate the Ranque-Hilsch Vortex tube's performance and to reveal influential factors. Variance analysis, linear regression analysis, and the Taguchi method are primarily used in practice. This study aimed to compare the strengths and weaknesses of the factorial experimental design and Taguchi orthogonal array design in the statistical evaluation of the factors affecting the heat exchange of the Ranque-Hilsch Vortex tube. For this purpose, a detailed theory was created for the appropriate factorial ANOVA model to the data set (4 × 5 × 12 = 240 experiments) containing the Ranque-Hilsch Vortex tube and effective material type (polyamide, steel, brass, and aluminum), nozzle number (2,3,4,5 and 6), and input pressure parameters (1,5-7 bar). Following the factorial ANOVA solution, including all binary interactions, the findings were obtained according to the most suitable L16 Taguchi Orthogonal array, considering the four levels for each material, nozzle, and pressure. As a result of the ANOVA, all parameters were statistically significant on heat change (p < 0.001). On the other hand, the pressure was obtained as the only statistically significant factor according to the Taguchi analysis (F = 35.17, p = 0.008). The advantages and disadvantages of the two methods were compared regarding the test findings and graphical performances.

References

  • [1] A. M. Pinar, O. Uluer, and V. Kırmacı, "Statistical assessment of counterflow vortex tube performance for different nozzle numbers, cold mass fractions, and inlet pressures via taguchi method," Exp. Heat Transf., vol. 22, no. 4, pp. 271–282, 2009, doi: 10.1080/08916150903099058.
  • [2] H. Kaya, O. Uluer, E. Kocaoğlu, and V. Kirmaci, "Experimental analysis of cooling and heating performance of serial and parallel connected counterflow Ranquee–Hilsch vortex tube systems using carbon dioxide as a working fluid," Int. J. Refrig., vol. 106, pp. 297–307, 2019, doi: 10.1016/j.ijrefrig.2019.07.004.
  • [3] H. Gökçe, "Optimization of Ranque–Hilsch vortex tube performances via Taguchi method," J. Brazilian Soc. Mech. Sci. Eng., vol. 42, no. 11, 2020, doi: 10.1007/s40430-020-02649-z.
  • [4] K. Dincer, S. Baskaya, B. Z. Uysal, and I. Ucgul, "Experimental investigation of the performance of a Ranque-Hilsch vortex tube with regard to a plug located at the hot outlet," Int. J. Refrig., vol. 32, no. 1, pp. 87–94, 2009, doi: 10.1016/j.ijrefrig.2008.06.002.
  • [5] W. Fröhlingsdorf and H. Unger, "Numerical investigations of the compressible flow and the energy separation in the Ranque-Hilsch vortex tube," Int. J. Heat Mass Transf., vol. 42, no. 3, pp. 415–422, 1998, doi: 10.1016/S0017-9310(98)00191-4.
  • [6] M. Korkmaz, A. Dogan, and V. Kırmacı, "Performance Analysis of Counterflow Ranque – Hilsch Vortex Tube with Linear Regression, Support Vector Machines and Gaussian Process Regression Method," Gazi J. Eng. Sci., vol. 8, no. 2, pp. 361–370, 2022, doi: doi:10.30855/gmbd.0705015.
  • [7] T. Dutta, K. P. Sinhamahapatra, and S. S. Bandyopadhyay, "Numerical investigation of gas species and energy separation in the Ranque-Hilsch vortex tube using real gas model," Int. J. Refrig., vol. 34, no. 8, pp. 2118–2128, 2011, doi: 10.1016/j.ijrefrig.2011.06.004.
  • [8] M. Bovand, M. S. Valipour, K. Dincer, and A. Tamayol, "Numerical analysis of the curvature effects on Ranque-Hilsch vortex tube refrigerators," Appl. Therm. Eng., vol. 65, no. 1–2, pp. 176–183, 2014, doi: 10.1016/j.applthermaleng.2013.11.045.
  • [9] X. Han et al., "The influence of working gas characteristics on energy separation of vortex tube," Appl. Therm. Eng., vol. 61, no. 2, pp. 171–177, 2013, doi: 10.1016/j.applthermaleng.2013.07.027.
  • [10] R. Shamsoddini and A. H. Nezhad, "Numerical analysis of the effects of nozzles number on the flow and power of cooling of a vortex tube," Int. J. Refrig., vol. 33, no. 4, pp. 774–782, 2010, doi: 10.1016/j.ijrefrig.2009.12.029.
  • [11] S. Eiamsa-ard, "Experimental investigation of energy separation in a counterflow Ranque-Hilsch vortex tube with multiple inlet snail entries," Int. Commun. Heat Mass Transf., vol. 37, no. 6, pp. 637–643, 2010, doi: 10.1016/j.icheatmasstransfer.2010.02.007.
  • [12] Y. Xue, M. Arjomandi, and R. Kelso, "Energy analysis within a vortex tube," Exp. Therm. Fluid Sci., vol. 52, pp. 139–145, 2014, doi: 10.1016/j.expthermflusci.2013.09.004.
  • [13] Y. Xue, M. Arjomandi, and R. Kelso, "Experimental study of the thermal separation in a vortex tube," Exp. Therm. Fluid Sci., vol. 46, pp. 175–182, 2013, doi: 10.1016/j.expthermflusci.2012.12.009.
  • [14] A. V. Khait, A. S. Noskov, A. V. Lovtsov, and V. N. Alekhin, "Semi-empirical turbulence model for numerical simulation of swirled compressible flows observed in Ranque-Hilsch vortex tube," Int. J. Refrig., vol. 48, pp. 132–141, 2014, doi: 10.1016/j.ijrefrig.2014.09.006.
  • [15] H. A. Kandil and S. T. Abdelghany, "Computational investigation of different effects on the performance of the Ranque-Hilsch vortex tube," Energy, vol. 84, pp. 207–218, 2015, doi: 10.1016/j.energy.2015.02.089.
  • [16] S. Mohammadi and F. Farhadi, "Experimental and numerical study of the gas-gas separation efficiency in a Ranque-Hilsch vortex tube," Sep. Purif. Technol., vol. 138, pp. 177–185, 2014, doi: 10.1016/j.seppur.2014.10.022.
  • [17] M. Korkmaz, A. Binal, H. Kaya, and V. Kırmacı, "ANN based ternary diagrams for thermal performance of a Ranque Hilsch vortex tube with different working fluids," Therm. Sci. Eng. Prog., vol. 40, no. October 2022, p. 101803, 2023, doi: 10.1016/j.tsep.2023.101803.
  • [18] Bethea RM., Statistical methods for engineers and scientists. CRC Press, 2018.
  • [19] P. Valcheva, "Some combinatorial structures in experimental design: overview, statistical models and applications," Biometrics Biostat. Int. J., vol. 7, no. 4, 2018, doi: 10.15406/bbij.2018.07.00228.
  • [20] H. Pouraria and M. R. Zangooee, "Numerical investigation of vortex tube refrigerator with a divergent hot tube," Energy Procedia, vol. 14, no. 2011, pp. 1554–1559, 2012, doi: 10.1016/j.egypro.2011.12.1132.
  • [21] A. M. Pinar, O. Uluer, and V. Kirmaci, "Optimization of counter flow Ranque-Hilsch vortex tube performance using Taguchi method," Int. J. Refrig., vol. 32, no. 6, pp. 1487–1494, 2009, doi: 10.1016/j.ijrefrig.2009.02.018.
  • [22] H. Gokce, "Evaluation and Optimization of O2 Used Ranque-Hilsch Vortex Tube Performance," Energy Sources, Part A Recover. Util. Environ. Eff., vol. 43, no. 13, pp. 1566–1576, 2021, doi: 10.1080/15567036.2020.1817188.
  • [23] T. Madani, M. Boukraa, M. Aissani, T. Chekifi, A. Ziadi, and M. Zirari, "Experimental investigation and numerical analysis using Taguchi and ANOVA methods for underwater friction stir welding of aluminium alloy 2017 process improvement," Int. J. Press. Vessel. Pip., vol. 201, no. December 2022, p. 104879, 2023, doi: 10.1016/j.ijpvp.2022.104879.
There are 23 citations in total.

Details

Primary Language English
Subjects Optimization Techniques in Mechanical Engineering
Journal Section Articles
Authors

Selen Yılmaz Işıkhan 0000-0002-3725-2987

Murat Korkmaz 0000-0002-3721-2854

Volkan Kırmacı 0000-0001-7076-1911

Publication Date July 31, 2024
Submission Date November 1, 2023
Acceptance Date December 4, 2023
Published in Issue Year 2024 Volume: 12 Issue: 3

Cite

APA Yılmaz Işıkhan, S., Korkmaz, M., & Kırmacı, V. (2024). Statistical Assessment of Counterflow Ranque-Hilsch Vortex Tube Performance. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 12(3), 1489-1505. https://doi.org/10.29130/dubited.1384832
AMA Yılmaz Işıkhan S, Korkmaz M, Kırmacı V. Statistical Assessment of Counterflow Ranque-Hilsch Vortex Tube Performance. DUBİTED. July 2024;12(3):1489-1505. doi:10.29130/dubited.1384832
Chicago Yılmaz Işıkhan, Selen, Murat Korkmaz, and Volkan Kırmacı. “Statistical Assessment of Counterflow Ranque-Hilsch Vortex Tube Performance”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 12, no. 3 (July 2024): 1489-1505. https://doi.org/10.29130/dubited.1384832.
EndNote Yılmaz Işıkhan S, Korkmaz M, Kırmacı V (July 1, 2024) Statistical Assessment of Counterflow Ranque-Hilsch Vortex Tube Performance. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 12 3 1489–1505.
IEEE S. Yılmaz Işıkhan, M. Korkmaz, and V. Kırmacı, “Statistical Assessment of Counterflow Ranque-Hilsch Vortex Tube Performance”, DUBİTED, vol. 12, no. 3, pp. 1489–1505, 2024, doi: 10.29130/dubited.1384832.
ISNAD Yılmaz Işıkhan, Selen et al. “Statistical Assessment of Counterflow Ranque-Hilsch Vortex Tube Performance”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 12/3 (July 2024), 1489-1505. https://doi.org/10.29130/dubited.1384832.
JAMA Yılmaz Işıkhan S, Korkmaz M, Kırmacı V. Statistical Assessment of Counterflow Ranque-Hilsch Vortex Tube Performance. DUBİTED. 2024;12:1489–1505.
MLA Yılmaz Işıkhan, Selen et al. “Statistical Assessment of Counterflow Ranque-Hilsch Vortex Tube Performance”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 12, no. 3, 2024, pp. 1489-05, doi:10.29130/dubited.1384832.
Vancouver Yılmaz Işıkhan S, Korkmaz M, Kırmacı V. Statistical Assessment of Counterflow Ranque-Hilsch Vortex Tube Performance. DUBİTED. 2024;12(3):1489-505.