Review
BibTex RIS Cite

A Review on Galling of Aluminum in Cold Forming Processes

Year 2024, Volume: 12 Issue: 3, 1709 - 1722, 31.07.2024
https://doi.org/10.29130/dubited.1385121

Abstract

As world’s sustainability become the most influential topic, aluminum and its alloys are becoming the preferred material of the automotive industry because they allow vehicle weight to be reduced without compromising safety. Thus, aluminum has taken its place in the global industry as an alternative material that can be used instead of steel. The main drawback of forming aluminum at room temperature is galling. This phenomena in cold forming of aluminum not only affect the quality of the produced parts but also the lifespan of production tools. This paper reviews the galling of aluminum alloys during bulk and sheet cold forming processes along with friction conditions. The available testing methods in order to simulate the actual cold forming process are introduced. Effect of process parameters such as lubrication, tool surface finish and tool coatings are discussed in detail.

References

  • [1] MIT Energy Initiative. 2019. Insights into Future Mobility. Cambridge, MA: MIT Energy Initiative.
  • [2] J. Bouquerel, B. Diawara, A. Dubois, A. Dubar, J.-B. Vogt, D. Najjar, “Investigations of the microstructural response to a cold forging process of the 6082-T6 alloy,” Materials and Design, vol. 68, pp.245-258, 2015.
  • [3] A. Kumar, R.Maithani, A. Kumar, D. Kumar, S. Sharma, “An all-aluminium vehicle’s design and feasibility analysis”, Materials Today: Proceedings, vol.64, pp. 1244-1249, 2022.
  • [4] M. Goede, “Sustainable Production Technologies of Emission reduced Lightweight car concepts (SuperLIGHT-CAR)”, TIP4-CT-2005-516465, 2009.
  • [5] M. Goede, M. Stehlin, L. Rafflenbeul, G. Kopp, E. Beeh, “Super Light Car—lightweight construction thanks to a multi-material design and function integration”, European Transport Research Review, vol. 1, pp. 5–10, 2009.
  • [6] W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A.Vieregge, “Recent development in aluminium alloys for the automotive indusrty”, Materials Science and Engineering A- Structural Materials Properties Microstructure and Processing, vol. 280, no. 1, pp.37-49, 2000.
  • [7] J. Hirsch, “Automotive Trends in Aluminium-The European Perspective”, Materials Forum, vol.28, pp. 15-23, 2004. [8] J. Hirsch, “Aluminium Alloys for Automotive Application”, Materials Science Forum, vol.242, pp. 33-50, 1997.
  • [9] J. Hirsch, “Aluminium in Innovative Light-Weight Car Design”, MATERIALS TRANSACTIONS, vol.52, pp. 818-824, 2011.
  • [10] R. Howard, N. Bogh, D. S. MacKenzie, “Heat Treading Processes and Equipment,” in Handbook of Aluminum: Volume 1 Physical Metallurgy and Processes, New York: Marcel Dekker, 2003, pp. 882.
  • [11] B. Karahan, U. İnce, S. Yurtdaş, N.E. Kılınçdemir, F.C. Ağarer, C. Kılıçaslan, “On the Cold Forging of 6082 H13 and T4 Aluminum Alloy Bushes” in 5th International Symposium on Innovative Technologies in Engineering and Science, Baku, 2017.
  • [12] P. C. Sharath, “Multi directional forging: an advanced deforming technique for severe plastic deformation,” in Advanced Welding and Deforming, Elsevier, 2021, pp. 529-556.
  • [13] C. Kılıçaslan, U. İnce, “Soğuk Dövme Kalıplarında Meydana Gelen Kırılma Sebeplerinin Nümerik Olarak İncelenmesi”, Mühendis ve Makina, vol. 57, pp. 65-71, 2016.
  • [14] M. B. Toparlı, “Soğuk Dövme Kalıplarında Ömür Artışı Elde Etmek için Baskın Hasar Mekanizmasının Belirlenmesi,” Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 24, pp. 157-172, 2019.
  • [15] J. Heinrichs, M. Olsson, S. Jacobson, “Initiation of Galling in Metal Forming: Differences Between Aluminium and Austenitic Stainless Steel Studied In Situ in the SEM”, Tribology Letters, vol.50, pp.431-438, 2013.
  • [16] J. Heinrichs, S. Jacobson, “Mechanisms of material transfer studied in situ in the SEM: Explanations to the success of DLC coated tools in aluminium forming,” Wear, vol. 292, pp. 49-60, 2012.
  • [17] K. Le Mercier, M. Dubar, K. Mocellin, A. Dubois, L. Dubar, “Quantitative analysis of galling in cold forging of a commercial Al-Mg-Si alloy,” in International Conference on the Technology of Plasticity, Cambridge, 2017.
  • [18] M. Hanson, “On adhesion and galling in metal forming”, Ph.D. Dissertation, Faculty of Science and Technology, Uppsala University, 2008.
  • [19] V. Westlund, J. Heinrichs, S. Jacobson, “On the Role of Material Transfer in Friction Between Metals: Initial Phenomena and Effects of Roughness and Boundary Lubrication in Sliding Between Aluminium and Tool Steels”, Tribology Letters, vol. 66, pp. 1-15, 2018.
  • [20] K. G. Budinski, S. T. Budinski, “Interpretation of galling tests”, Wear, vol. 332-333, pp. 1185-1192, 2015.
  • [21] B. Podgornik, S. Hogmark, J. Pezdirnik, “Comparison between different test methods for evaluation of galling properties of surface engineered tool surfaces”, Wear, vol. 257, pp. 843-851, 2004.
  • [22] M. Hanson, A. Gaard, P. Krakhmalev, S. Hogmark, J. Bergström, “Comparison of two test methods for evaluation of forming tool materials”, Tribotest, vol. 14, pp. 147-158, 2008.
  • [23] J. Heinrichs, S. Jacobson, “Laboratory test simulation of galling in cold forming of aluminium,” Wear, vol. 267, PP. 2278-2286, 2009.
  • [24] M. H. Sulaiman, R. N. Farahana, K. Bienk, C. V. Nielsen, N. Bay, “ Effects of DLC/TiAlN-coated die on friction and wear in sheet-metal forming under dry and oil-lubricated conditions: Experimental and numerical studies”, Wear, vol.438-439, 2019.
  • [25] A. Ghiotti, S. Bruschi, “Tribological behaviour of DLC coatings for sheet metal forming tools”, Wear, vol. 271, pp. 2454-2458, 2011.
  • [26] C. Kayış, E. A. Diler, H. Sandallı, F.C. Ağarer, “Effects of TiN/CrN, CrAlN, and TiN Coatings on the Performance of AISI M2 Tool Steel”, Düzce University Journal of Science & Technology, vol. 10, pp. 1344-1358, 2022.
  • [27] J. Heinrichs, S. Jacobson, “ Mechanisms of Transfer of Aluminium to PVD- Coated Forming Tools”, Tribology Letters, vol. 46, pp. 299-312, 2012.
  • [28] J. Heinrichs, S. Jacobson, “Evaluation of TiB2 coatings in cold forming of aluminium”, Surface Engineering, vol. 28, pp. 517-525, 2012.
  • [29] J. Heinrichs, S. Jacobson, “Laboratory test simulation of aluminium cold forming- influence from PVD tool coatings on the tendency to galling,” Surface & Coating Technology, vol. 204, pp.3606-3613, 2010.
  • [30] J. Heinrichs, S. Jacobson, “The influence from shape and size of tool surface defects on the occurence of galling in cold forming of aluminium,” Wear, vol. 271, pp.2517-2524, 2011.
  • [31] N. S. Nosar, M. Olsson, “Influence of tool steel surface topography on adhesion and material transfer in stainless steel/tool steel sliding contact”, Wear, vol. 303, pp. 30-39, 2013.
  • [32] J. Pujante, L. Pelcastre, M. Vilaseca, D. Casellas,. B. Prakash, “Investigations into wear and galling mechanism of aluminium alloy-tool steel tribopair at different temperatures”, Wear, vol. 308, pp. 193-198, 2013.
  • [33] C. I. Pruncu, T. T. Pham, A. Dubois, M. Dubar, L. Dubar, “Morphology of Surfcae Integrity as Effect of Cold Forging of Aluminum Alloy”, Tribology Transactions, vol. 61, pp. 632-639, 2018.
  • [34] E. Vidales, N. Cuadrado, E.Garcia-Llamas, J. T. Garitano, I. Aseguinolaza, M. Carranza, M. Vilaseca, G. Ramirez, “Surface roughness analysis for improving punching tools performance of 5754 aluminium alloy”, Wear, vol. 524-525, 2023.
  • [35] J. Tenner, K. Andreas, A. Radius, M. Merklein, “Numerical and experimental investigation of dry deep drawing of aluminum alloys with conventional and coated tool surfaces”, in International Conference on the Technology of Plasticity (ICTP), Cambridge, 2017.
  • [36] M. P. Pereira, W. Yan, B.F. Rolfe, “Contact pressure evolution and its relation to wear in sheet metal forming”, Wear, vol. 265, pp. 1687-1699, 2008.
  • [37] W. Dong, L. Xu, Q. Lin, Z. Wang, “Experimental and numerical investigation on galling behavior in sheet metal forming process”, International Journal of Advanced Manufacturing Technology, vol.88 (1-4), pp. 1101-1109, 2016.
  • [38] M. Hawryluk, “Review of selected methods of increasing the life of forging tools in hot die forging processes”, Archives of Civil and Mechanical Engineering, vol.16, pp.845-866, 2016.
  • [39] X. Yang, Y. Hu, L. Zhang, Y. Zheng, D. J. Politis, X. Liu, L. Wang, “Experimental and modelling study of interaction between friction and galling under contact load change conditions”, Friction, vol.10, pp.454-472, 2022.
  • [40] Y. Hou, W. Zhang, Z. Yu, S. Li, “Selection of tool materials and surface treatments for improved galling performance in sheet metal forming”, The International Journal of Advanced Manufacturing Technology, vol.43, pp.1010-1017, 2009.
  • [41] W. Yan, E. P. Bus so, N. P. O’Dowd, “A micromechanics investigation of sliding wear in coated components”, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol.456, pp.2387-2407, 2000.
  • [42] W. Yan, “Theoretical investigation of wear-resistance mechanism of superelastic shape memory alloy NiTi”, Materials Science and Engineering: A, vol.427, pp.348-355, 2006.
  • [43] J. Hol, M.V. Cid Alfaro, M. B. De Rooij, T. Meinders, “Advanced friction modeling for sheet metal forming”, Wear, vol.286-287, pp.66-78, 2012.
  • [44] F. Klocke, D. Trauth, A. Shirobokov, P. Mattfeld, “FE-analysis and in situ visualization of pressure-, slip-rate-, and temperature-dependent coefficients of friction for advanced sheet metal forming: development of a novel coupled user subroutine for shell and continuum discretization”, The International Journal of Advanced Manufacturing Technology, vol.81, pp.397-410, 2015.
  • [45] O. Filali, A. Dubois, M. Moghadam, C. V. Nielsen, L. Dubar, “Numerical prediction of the galling of aluminium alloys in cold strip drawing”, Journal of Manufacturing Processes, vol.73, pp.340-353, 2022.

Soğuk Şekillendirme Proseslerinde Alüminyumun Adhesiv Aşınması Üzerine Bir İnceleme

Year 2024, Volume: 12 Issue: 3, 1709 - 1722, 31.07.2024
https://doi.org/10.29130/dubited.1385121

Abstract

Sürdürülebilirlik dünyanın en etkili konusu haline gelirken, alüminyum ve alaşımları, güvenlikten ödün vermeden araç ağırlığının azaltılmasına olanak sağladığı için otomotiv sektörünün tercih edilen malzemesi haline gelmektedir. Böylece alüminyum çelik yerine kullanılabilecek alternatif bir malzeme olarak küresel endüstride yerini almaktadır. Alüminyumun oda sıcaklığında şekillendirilmesinin ana dezavantajı adhesiv aşınmadır. Alüminyumun soğuk şekillendirilmesindeki bu olay, yalnızca üretilen parçaların kalitesini değil, aynı zamanda üretim takımlarının ömrünü de etkiler. Bu çalışmada, sürtünme koşullarıyla birlikte kütlesel ve sac soğuk şekillendirme işlemleri sırasında alüminyum alaşımlarının adhesiv aşınmasını incelemektedir. Gerçek soğuk şekillendirme sürecini simüle etmek için mevcut test yöntemleri tanıtılmaktadır. Yağlama, takım yüzey kalitesi ve takım kaplamaları gibi proses parametrelerinin etkisi detaylı olarak tartışılmaktadır.

References

  • [1] MIT Energy Initiative. 2019. Insights into Future Mobility. Cambridge, MA: MIT Energy Initiative.
  • [2] J. Bouquerel, B. Diawara, A. Dubois, A. Dubar, J.-B. Vogt, D. Najjar, “Investigations of the microstructural response to a cold forging process of the 6082-T6 alloy,” Materials and Design, vol. 68, pp.245-258, 2015.
  • [3] A. Kumar, R.Maithani, A. Kumar, D. Kumar, S. Sharma, “An all-aluminium vehicle’s design and feasibility analysis”, Materials Today: Proceedings, vol.64, pp. 1244-1249, 2022.
  • [4] M. Goede, “Sustainable Production Technologies of Emission reduced Lightweight car concepts (SuperLIGHT-CAR)”, TIP4-CT-2005-516465, 2009.
  • [5] M. Goede, M. Stehlin, L. Rafflenbeul, G. Kopp, E. Beeh, “Super Light Car—lightweight construction thanks to a multi-material design and function integration”, European Transport Research Review, vol. 1, pp. 5–10, 2009.
  • [6] W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A.Vieregge, “Recent development in aluminium alloys for the automotive indusrty”, Materials Science and Engineering A- Structural Materials Properties Microstructure and Processing, vol. 280, no. 1, pp.37-49, 2000.
  • [7] J. Hirsch, “Automotive Trends in Aluminium-The European Perspective”, Materials Forum, vol.28, pp. 15-23, 2004. [8] J. Hirsch, “Aluminium Alloys for Automotive Application”, Materials Science Forum, vol.242, pp. 33-50, 1997.
  • [9] J. Hirsch, “Aluminium in Innovative Light-Weight Car Design”, MATERIALS TRANSACTIONS, vol.52, pp. 818-824, 2011.
  • [10] R. Howard, N. Bogh, D. S. MacKenzie, “Heat Treading Processes and Equipment,” in Handbook of Aluminum: Volume 1 Physical Metallurgy and Processes, New York: Marcel Dekker, 2003, pp. 882.
  • [11] B. Karahan, U. İnce, S. Yurtdaş, N.E. Kılınçdemir, F.C. Ağarer, C. Kılıçaslan, “On the Cold Forging of 6082 H13 and T4 Aluminum Alloy Bushes” in 5th International Symposium on Innovative Technologies in Engineering and Science, Baku, 2017.
  • [12] P. C. Sharath, “Multi directional forging: an advanced deforming technique for severe plastic deformation,” in Advanced Welding and Deforming, Elsevier, 2021, pp. 529-556.
  • [13] C. Kılıçaslan, U. İnce, “Soğuk Dövme Kalıplarında Meydana Gelen Kırılma Sebeplerinin Nümerik Olarak İncelenmesi”, Mühendis ve Makina, vol. 57, pp. 65-71, 2016.
  • [14] M. B. Toparlı, “Soğuk Dövme Kalıplarında Ömür Artışı Elde Etmek için Baskın Hasar Mekanizmasının Belirlenmesi,” Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 24, pp. 157-172, 2019.
  • [15] J. Heinrichs, M. Olsson, S. Jacobson, “Initiation of Galling in Metal Forming: Differences Between Aluminium and Austenitic Stainless Steel Studied In Situ in the SEM”, Tribology Letters, vol.50, pp.431-438, 2013.
  • [16] J. Heinrichs, S. Jacobson, “Mechanisms of material transfer studied in situ in the SEM: Explanations to the success of DLC coated tools in aluminium forming,” Wear, vol. 292, pp. 49-60, 2012.
  • [17] K. Le Mercier, M. Dubar, K. Mocellin, A. Dubois, L. Dubar, “Quantitative analysis of galling in cold forging of a commercial Al-Mg-Si alloy,” in International Conference on the Technology of Plasticity, Cambridge, 2017.
  • [18] M. Hanson, “On adhesion and galling in metal forming”, Ph.D. Dissertation, Faculty of Science and Technology, Uppsala University, 2008.
  • [19] V. Westlund, J. Heinrichs, S. Jacobson, “On the Role of Material Transfer in Friction Between Metals: Initial Phenomena and Effects of Roughness and Boundary Lubrication in Sliding Between Aluminium and Tool Steels”, Tribology Letters, vol. 66, pp. 1-15, 2018.
  • [20] K. G. Budinski, S. T. Budinski, “Interpretation of galling tests”, Wear, vol. 332-333, pp. 1185-1192, 2015.
  • [21] B. Podgornik, S. Hogmark, J. Pezdirnik, “Comparison between different test methods for evaluation of galling properties of surface engineered tool surfaces”, Wear, vol. 257, pp. 843-851, 2004.
  • [22] M. Hanson, A. Gaard, P. Krakhmalev, S. Hogmark, J. Bergström, “Comparison of two test methods for evaluation of forming tool materials”, Tribotest, vol. 14, pp. 147-158, 2008.
  • [23] J. Heinrichs, S. Jacobson, “Laboratory test simulation of galling in cold forming of aluminium,” Wear, vol. 267, PP. 2278-2286, 2009.
  • [24] M. H. Sulaiman, R. N. Farahana, K. Bienk, C. V. Nielsen, N. Bay, “ Effects of DLC/TiAlN-coated die on friction and wear in sheet-metal forming under dry and oil-lubricated conditions: Experimental and numerical studies”, Wear, vol.438-439, 2019.
  • [25] A. Ghiotti, S. Bruschi, “Tribological behaviour of DLC coatings for sheet metal forming tools”, Wear, vol. 271, pp. 2454-2458, 2011.
  • [26] C. Kayış, E. A. Diler, H. Sandallı, F.C. Ağarer, “Effects of TiN/CrN, CrAlN, and TiN Coatings on the Performance of AISI M2 Tool Steel”, Düzce University Journal of Science & Technology, vol. 10, pp. 1344-1358, 2022.
  • [27] J. Heinrichs, S. Jacobson, “ Mechanisms of Transfer of Aluminium to PVD- Coated Forming Tools”, Tribology Letters, vol. 46, pp. 299-312, 2012.
  • [28] J. Heinrichs, S. Jacobson, “Evaluation of TiB2 coatings in cold forming of aluminium”, Surface Engineering, vol. 28, pp. 517-525, 2012.
  • [29] J. Heinrichs, S. Jacobson, “Laboratory test simulation of aluminium cold forming- influence from PVD tool coatings on the tendency to galling,” Surface & Coating Technology, vol. 204, pp.3606-3613, 2010.
  • [30] J. Heinrichs, S. Jacobson, “The influence from shape and size of tool surface defects on the occurence of galling in cold forming of aluminium,” Wear, vol. 271, pp.2517-2524, 2011.
  • [31] N. S. Nosar, M. Olsson, “Influence of tool steel surface topography on adhesion and material transfer in stainless steel/tool steel sliding contact”, Wear, vol. 303, pp. 30-39, 2013.
  • [32] J. Pujante, L. Pelcastre, M. Vilaseca, D. Casellas,. B. Prakash, “Investigations into wear and galling mechanism of aluminium alloy-tool steel tribopair at different temperatures”, Wear, vol. 308, pp. 193-198, 2013.
  • [33] C. I. Pruncu, T. T. Pham, A. Dubois, M. Dubar, L. Dubar, “Morphology of Surfcae Integrity as Effect of Cold Forging of Aluminum Alloy”, Tribology Transactions, vol. 61, pp. 632-639, 2018.
  • [34] E. Vidales, N. Cuadrado, E.Garcia-Llamas, J. T. Garitano, I. Aseguinolaza, M. Carranza, M. Vilaseca, G. Ramirez, “Surface roughness analysis for improving punching tools performance of 5754 aluminium alloy”, Wear, vol. 524-525, 2023.
  • [35] J. Tenner, K. Andreas, A. Radius, M. Merklein, “Numerical and experimental investigation of dry deep drawing of aluminum alloys with conventional and coated tool surfaces”, in International Conference on the Technology of Plasticity (ICTP), Cambridge, 2017.
  • [36] M. P. Pereira, W. Yan, B.F. Rolfe, “Contact pressure evolution and its relation to wear in sheet metal forming”, Wear, vol. 265, pp. 1687-1699, 2008.
  • [37] W. Dong, L. Xu, Q. Lin, Z. Wang, “Experimental and numerical investigation on galling behavior in sheet metal forming process”, International Journal of Advanced Manufacturing Technology, vol.88 (1-4), pp. 1101-1109, 2016.
  • [38] M. Hawryluk, “Review of selected methods of increasing the life of forging tools in hot die forging processes”, Archives of Civil and Mechanical Engineering, vol.16, pp.845-866, 2016.
  • [39] X. Yang, Y. Hu, L. Zhang, Y. Zheng, D. J. Politis, X. Liu, L. Wang, “Experimental and modelling study of interaction between friction and galling under contact load change conditions”, Friction, vol.10, pp.454-472, 2022.
  • [40] Y. Hou, W. Zhang, Z. Yu, S. Li, “Selection of tool materials and surface treatments for improved galling performance in sheet metal forming”, The International Journal of Advanced Manufacturing Technology, vol.43, pp.1010-1017, 2009.
  • [41] W. Yan, E. P. Bus so, N. P. O’Dowd, “A micromechanics investigation of sliding wear in coated components”, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol.456, pp.2387-2407, 2000.
  • [42] W. Yan, “Theoretical investigation of wear-resistance mechanism of superelastic shape memory alloy NiTi”, Materials Science and Engineering: A, vol.427, pp.348-355, 2006.
  • [43] J. Hol, M.V. Cid Alfaro, M. B. De Rooij, T. Meinders, “Advanced friction modeling for sheet metal forming”, Wear, vol.286-287, pp.66-78, 2012.
  • [44] F. Klocke, D. Trauth, A. Shirobokov, P. Mattfeld, “FE-analysis and in situ visualization of pressure-, slip-rate-, and temperature-dependent coefficients of friction for advanced sheet metal forming: development of a novel coupled user subroutine for shell and continuum discretization”, The International Journal of Advanced Manufacturing Technology, vol.81, pp.397-410, 2015.
  • [45] O. Filali, A. Dubois, M. Moghadam, C. V. Nielsen, L. Dubar, “Numerical prediction of the galling of aluminium alloys in cold strip drawing”, Journal of Manufacturing Processes, vol.73, pp.340-353, 2022.
There are 44 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors
Journal Section Articles
Authors

Hatice Sandallı 0000-0002-5550-8480

Mert Özdoğan 0000-0001-8229-0563

Publication Date July 31, 2024
Submission Date November 2, 2023
Acceptance Date January 20, 2024
Published in Issue Year 2024 Volume: 12 Issue: 3

Cite

APA Sandallı, H., & Özdoğan, M. (2024). A Review on Galling of Aluminum in Cold Forming Processes. Duzce University Journal of Science and Technology, 12(3), 1709-1722. https://doi.org/10.29130/dubited.1385121
AMA Sandallı H, Özdoğan M. A Review on Galling of Aluminum in Cold Forming Processes. DUBİTED. July 2024;12(3):1709-1722. doi:10.29130/dubited.1385121
Chicago Sandallı, Hatice, and Mert Özdoğan. “A Review on Galling of Aluminum in Cold Forming Processes”. Duzce University Journal of Science and Technology 12, no. 3 (July 2024): 1709-22. https://doi.org/10.29130/dubited.1385121.
EndNote Sandallı H, Özdoğan M (July 1, 2024) A Review on Galling of Aluminum in Cold Forming Processes. Duzce University Journal of Science and Technology 12 3 1709–1722.
IEEE H. Sandallı and M. Özdoğan, “A Review on Galling of Aluminum in Cold Forming Processes”, DUBİTED, vol. 12, no. 3, pp. 1709–1722, 2024, doi: 10.29130/dubited.1385121.
ISNAD Sandallı, Hatice - Özdoğan, Mert. “A Review on Galling of Aluminum in Cold Forming Processes”. Duzce University Journal of Science and Technology 12/3 (July 2024), 1709-1722. https://doi.org/10.29130/dubited.1385121.
JAMA Sandallı H, Özdoğan M. A Review on Galling of Aluminum in Cold Forming Processes. DUBİTED. 2024;12:1709–1722.
MLA Sandallı, Hatice and Mert Özdoğan. “A Review on Galling of Aluminum in Cold Forming Processes”. Duzce University Journal of Science and Technology, vol. 12, no. 3, 2024, pp. 1709-22, doi:10.29130/dubited.1385121.
Vancouver Sandallı H, Özdoğan M. A Review on Galling of Aluminum in Cold Forming Processes. DUBİTED. 2024;12(3):1709-22.