Research Article
BibTex RIS Cite

Titanyum/CFRP Hibrit Kompozitlerin Çekme Yüklemesi Altındaki Kırılma Davranışı

Year 2024, Volume: 12 Issue: 4, 2315 - 2329, 23.10.2024
https://doi.org/10.29130/dubited.1472422

Abstract

Karbon fiber takviyeli polimer (CFRP) kompozitler, düşük yoğunlukta yüksek rijitlik ve mukavemetleri nedeniyle çeşitli hafif mühendislik uygulamalarında geniş bir kullanım alanı bulmuştur. Bununla birlikte, CFRP yapıları düşük taşıma mukavemeti gibi belirli zayıflıklar gösterirler, bu durum da CFRP yapılarındaki darbe direncinin azalmasına neden olur. Bu sorunu çözmek için metallerin şekillenebilirliğini ve CFRP kompozitlerin yüksek özgül mukavemeti birlikte kullanılarak metal/CFRP kompozitler bir alternatif olarak ortaya çıkmıştır. Bu çalışmada çekme testleri 0°, 90° ve ±45° istifleme dizilimi ile CFRP kompozit levhalar üzerinde gerçekleştirilmiş ve ilgili yük-şekil değişimi eğrileri elde edilmiştir. Çekme testlerinin sayısal çözümlenmesi, LS-DYNA simülasyon programı kullanılarak gerçekleştirilmiş ve sayısal model deneysel sonuçlarla doğrulanmıştır. Ayrıca, farklı kalınlıklardaki metal alaşımı/CFRP hibrit kompozit levhaların çekme yüklemesi altındaki kırılma davranışı üzerinde çeşitli metal tiplerinin etkisinin incelenmesi için nümerik simülasyonlar yapılmıştır. Sonuçlar hem hibrit CFRP kompozitlerinin kalınlığının hem de metal tipinin metal-hibrit kompozitlerin performansı üzerinde önemli bir etkisi olduğunu göstermektedir. Ek olarak, çekme testi sonuçları ile sayısal simülasyon sonuçları arasında karşılaştırma yapılmış iyi bir uyum olduğu görülmüştür.

References

  • [1] T. Sinmazçelik, E. Avcu, M. Ö. Bora, and O. Çoban, “A review: Fibre metal laminates, background, bonding types and applied test methods,” Materials & Design (1980-2015), vol. 32, no. 7, pp. 3671–3685, Mar. 2011.
  • [2] A. Vlot and J. W. Gunnink, Fibre metal laminates:an introduction, 2001.
  • [3] L. B. Vogelesang and A. Vlot, “Development of fibre metal laminates for advanced aerospace structures,” J. Mater. Process. Technol., vol. 103, no. 1, pp. 1–5, 2000. L. B. Vogelesang and A. Vlot, “Development of fibre metal laminates for advanced aerospace structures,” Journal of Materials Processing Technology, vol. 103, no. 1, pp. 1–5, Jun. 2000.
  • [4] R. Alderliesten, Fatigue and Fracture of Fibre Metal Laminates, 2017.
  • [5] C. Bellini, V. Di Cocco, F. Iacoviello, and L. Sorrentino, “Failure energy and strength of Al/CFRP hybrid laminates under flexural load,” Material Design & Processing Communications, vol. 2, no. 5, Nov. 2019.
  • [6] Nassier. A. Nassir et al., “Experimental and numerical characterization of titanium-based fibre metal laminates,” Composite Structures, vol. 245, p. 112398, Apr. 2020.
  • [7] C. Chu, L. Shan, M. S. H. Al-Furjan, Zarei, M. H. Hajmohammad, and R. Kolahchi, “Experimental study for the effect of hole notched in fracture mechanics of GLARE and GFRP composites subjected to quasi-static loading,” Theoretical and Applied Fracture Mechanics, vol. 122, p. 103624, Oct. 2022.
  • [8] S. Yogesh and S. Madhu, “Mechanical properties evaluation of the Al reinforced CFRP fiber metal laminate,” Materials Today Proceedings, vol. 33, pp. 44–47, Jan. 2020.
  • [9] G.-C. Yu, L.-Z. Wu, L. Ma, and J. Xiong, “Low velocity impact of carbon fiber aluminum laminates,” Composite Structures, vol. 119, pp. 757–766, Jan. 2015.
  • [10] M. E. Kazemi et al., “Developing thermoplastic hybrid titanium composite laminates (HTCLS) at room temperature: Low-velocity impact analyses,” Composites Part a Applied Science and Manufacturing, vol. 149, p. 106552, Jul. 2021.
  • [11] M. E. Kazemi, L. Shanmugam, L. Yang, and J. Yang, “A review on the hybrid titanium composite laminates (HTCLs) with focuses on surface treatments, fabrications, and mechanical properties,” Compos. Part A Appl. Sci. Manuf., vol. 128, 2020.
  • [12] R. C. Santiago, W. J. Cantwell, N. Jones, and M. Alves, “The modelling of impact loading on thermoplastic fibre-metal laminates,” Composite Structures, vol. 189, pp. 228–238, Feb. 2018.
  • [13] E. C. Botelho, R. A. Silva, L. C. Pardini, and M. C. Rezende, “A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures,” Materials Research, vol. 9, no. 3, pp. 247–256, Sep. 2006.
  • [14] N. Rajesh et al., “Effect of stacking sequence of fibre metal laminates with carbon fibre reinforced composites on mechanical attributes: Numerical simulations and experimental validation,” Composites Science and Technology, vol. 221, pp. 109303–109303, Apr. 2022.
  • [15] J. Sun, S. Xu, G. Lu, D. Ruan, and Q. Wang, “Mechanical response of fibre metal laminates (FMLs) under low to intermediate strain rate tension,” Composite Structures, vol. 305, p. 116493, Nov. 2022.
  • [16] L. Yao, S. Zhang, X. Cao, Z. Gu, C. Wang, and W. He, “Tensile mechanical behavior and failure mechanisms of fiber metal laminates under various temperature environments,” Composite Structures, vol. 284, p. 115142, Jan. 2022.
  • [17] A. P. Sharma and R. Velmurugan, “Uni-axial tensile response and failure of glass fiber reinforced titanium laminates,” Thin-Walled Structures, vol. 154, p. 106859, Jun. 2020.
  • [18] D. García-González, M. Rodríguez-Millán, A. Vaz-Romero, and A. Arias, “High impact velocity on multi-layered composite of polyether ether ketone and aluminium,” Composite Interfaces, vol. 22, no. 8, pp. 705–715, Jun. 2015.
  • [19] S. K. Sundaram, B. A. G, and A. B, “Influence of target dynamics and number of impacts on ballistic performance of 6061-T6 and 7075-T6 aluminum alloy targets,” Mechanics Based Design of Structures and Machines, vol. 50, no. 3, pp. 993–1011, Mar. 2020.
  • [20] N. Taniguchi, T. Nishiwaki, and H. Kawada, “Tensile strength of unidirectional CFRP laminate under high strain rate,” Advanced Composite Materials, vol. 16, no. 2, pp. 167–180, Jan. 2007.
  • [21] D. Gao et al., “Effect of Strain Rate on Tensile Properties of Carbon Fiber-Reinforced Epoxy Laminates with Different Stacking Sequences and Ply Orientations,” Polymers, vol. 15, no. 12, p. 2711, Jun. 2023.
  • [22] J. Kwon, J. Choi, H. Huh, and J. Lee, “Evaluation of the effect of the strain rate on the tensile properties of carbon–epoxy composite laminates,” Journal of Composite Materials, vol. 51, no. 22, pp. 3197–3210, Dec. 2016.
  • [23] A. Fink and B. Kolesnikov, “Hybrid Titanium Composite Material Improving Composite Structure Coupling,” Spacecraft Structures, Materials and Mechanical Testing 2005, vol. 581, May 2005.
  • [24] J. Sun, A. Daliri, G. Lu, D. Liu, F. Xia, and A. Gong, “Tensile behaviour of titanium-based carbon-fibre/epoxy laminate,” Construction and Building Materials, vol. 281, p. 122633, Feb. 2021.

Failure Behavior of Titanium/CFRP Hybrid Composites Under Tensile Loading

Year 2024, Volume: 12 Issue: 4, 2315 - 2329, 23.10.2024
https://doi.org/10.29130/dubited.1472422

Abstract

Carbon fiber reinforced polymer (CFRP) composites have found widespread use in various lightweight engineering applications, owing to their high stiffness and strength at low density. Nevertheless, they exhibit certain weaknesses, such as low bearing strength, leading to reduced impact resistance in CFRP components. In addressing this challenge, metal/CFRP composites have emerged as an alternative, leveraging the ductility of metals along with the high specific strength of the CFRP composites. In this study, tensile tests were conducted on the CFRP composite plates with 0°, 90°, and ±45° stacking sequences, and the corresponding load-displacement curves were obtained. The numerical simulation of tensile tests was conducted by the LS-DYNA software, and the numerical model was verified with the experimental results. Furthermore, numerical simulations were conducted to examine the influence of various metal types on the failure behavior of metal alloy/CFRP hybrid composite plates with different thicknesses under tensile loading. The results indicate that both the thickness of the hybrid CFRP composites and the type of metal have a substantial impact on the performance of metal-hybrid components. Additionally, a comparison between the tensile test results and numerical simulation results reveals a good agreement.

References

  • [1] T. Sinmazçelik, E. Avcu, M. Ö. Bora, and O. Çoban, “A review: Fibre metal laminates, background, bonding types and applied test methods,” Materials & Design (1980-2015), vol. 32, no. 7, pp. 3671–3685, Mar. 2011.
  • [2] A. Vlot and J. W. Gunnink, Fibre metal laminates:an introduction, 2001.
  • [3] L. B. Vogelesang and A. Vlot, “Development of fibre metal laminates for advanced aerospace structures,” J. Mater. Process. Technol., vol. 103, no. 1, pp. 1–5, 2000. L. B. Vogelesang and A. Vlot, “Development of fibre metal laminates for advanced aerospace structures,” Journal of Materials Processing Technology, vol. 103, no. 1, pp. 1–5, Jun. 2000.
  • [4] R. Alderliesten, Fatigue and Fracture of Fibre Metal Laminates, 2017.
  • [5] C. Bellini, V. Di Cocco, F. Iacoviello, and L. Sorrentino, “Failure energy and strength of Al/CFRP hybrid laminates under flexural load,” Material Design & Processing Communications, vol. 2, no. 5, Nov. 2019.
  • [6] Nassier. A. Nassir et al., “Experimental and numerical characterization of titanium-based fibre metal laminates,” Composite Structures, vol. 245, p. 112398, Apr. 2020.
  • [7] C. Chu, L. Shan, M. S. H. Al-Furjan, Zarei, M. H. Hajmohammad, and R. Kolahchi, “Experimental study for the effect of hole notched in fracture mechanics of GLARE and GFRP composites subjected to quasi-static loading,” Theoretical and Applied Fracture Mechanics, vol. 122, p. 103624, Oct. 2022.
  • [8] S. Yogesh and S. Madhu, “Mechanical properties evaluation of the Al reinforced CFRP fiber metal laminate,” Materials Today Proceedings, vol. 33, pp. 44–47, Jan. 2020.
  • [9] G.-C. Yu, L.-Z. Wu, L. Ma, and J. Xiong, “Low velocity impact of carbon fiber aluminum laminates,” Composite Structures, vol. 119, pp. 757–766, Jan. 2015.
  • [10] M. E. Kazemi et al., “Developing thermoplastic hybrid titanium composite laminates (HTCLS) at room temperature: Low-velocity impact analyses,” Composites Part a Applied Science and Manufacturing, vol. 149, p. 106552, Jul. 2021.
  • [11] M. E. Kazemi, L. Shanmugam, L. Yang, and J. Yang, “A review on the hybrid titanium composite laminates (HTCLs) with focuses on surface treatments, fabrications, and mechanical properties,” Compos. Part A Appl. Sci. Manuf., vol. 128, 2020.
  • [12] R. C. Santiago, W. J. Cantwell, N. Jones, and M. Alves, “The modelling of impact loading on thermoplastic fibre-metal laminates,” Composite Structures, vol. 189, pp. 228–238, Feb. 2018.
  • [13] E. C. Botelho, R. A. Silva, L. C. Pardini, and M. C. Rezende, “A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures,” Materials Research, vol. 9, no. 3, pp. 247–256, Sep. 2006.
  • [14] N. Rajesh et al., “Effect of stacking sequence of fibre metal laminates with carbon fibre reinforced composites on mechanical attributes: Numerical simulations and experimental validation,” Composites Science and Technology, vol. 221, pp. 109303–109303, Apr. 2022.
  • [15] J. Sun, S. Xu, G. Lu, D. Ruan, and Q. Wang, “Mechanical response of fibre metal laminates (FMLs) under low to intermediate strain rate tension,” Composite Structures, vol. 305, p. 116493, Nov. 2022.
  • [16] L. Yao, S. Zhang, X. Cao, Z. Gu, C. Wang, and W. He, “Tensile mechanical behavior and failure mechanisms of fiber metal laminates under various temperature environments,” Composite Structures, vol. 284, p. 115142, Jan. 2022.
  • [17] A. P. Sharma and R. Velmurugan, “Uni-axial tensile response and failure of glass fiber reinforced titanium laminates,” Thin-Walled Structures, vol. 154, p. 106859, Jun. 2020.
  • [18] D. García-González, M. Rodríguez-Millán, A. Vaz-Romero, and A. Arias, “High impact velocity on multi-layered composite of polyether ether ketone and aluminium,” Composite Interfaces, vol. 22, no. 8, pp. 705–715, Jun. 2015.
  • [19] S. K. Sundaram, B. A. G, and A. B, “Influence of target dynamics and number of impacts on ballistic performance of 6061-T6 and 7075-T6 aluminum alloy targets,” Mechanics Based Design of Structures and Machines, vol. 50, no. 3, pp. 993–1011, Mar. 2020.
  • [20] N. Taniguchi, T. Nishiwaki, and H. Kawada, “Tensile strength of unidirectional CFRP laminate under high strain rate,” Advanced Composite Materials, vol. 16, no. 2, pp. 167–180, Jan. 2007.
  • [21] D. Gao et al., “Effect of Strain Rate on Tensile Properties of Carbon Fiber-Reinforced Epoxy Laminates with Different Stacking Sequences and Ply Orientations,” Polymers, vol. 15, no. 12, p. 2711, Jun. 2023.
  • [22] J. Kwon, J. Choi, H. Huh, and J. Lee, “Evaluation of the effect of the strain rate on the tensile properties of carbon–epoxy composite laminates,” Journal of Composite Materials, vol. 51, no. 22, pp. 3197–3210, Dec. 2016.
  • [23] A. Fink and B. Kolesnikov, “Hybrid Titanium Composite Material Improving Composite Structure Coupling,” Spacecraft Structures, Materials and Mechanical Testing 2005, vol. 581, May 2005.
  • [24] J. Sun, A. Daliri, G. Lu, D. Liu, F. Xia, and A. Gong, “Tensile behaviour of titanium-based carbon-fibre/epoxy laminate,” Construction and Building Materials, vol. 281, p. 122633, Feb. 2021.
There are 24 citations in total.

Details

Primary Language English
Subjects Solid Mechanics, Material Design and Behaviors
Journal Section Articles
Authors

Aysun Güven Çıtır 0000-0001-9230-5597

Serkan Toros 0000-0003-0438-2862

Fahrettin Öztürk 0000-0001-9517-7957

Publication Date October 23, 2024
Submission Date April 23, 2024
Acceptance Date August 20, 2024
Published in Issue Year 2024 Volume: 12 Issue: 4

Cite

APA Güven Çıtır, A., Toros, S., & Öztürk, F. (2024). Failure Behavior of Titanium/CFRP Hybrid Composites Under Tensile Loading. Duzce University Journal of Science and Technology, 12(4), 2315-2329. https://doi.org/10.29130/dubited.1472422
AMA Güven Çıtır A, Toros S, Öztürk F. Failure Behavior of Titanium/CFRP Hybrid Composites Under Tensile Loading. DUBİTED. October 2024;12(4):2315-2329. doi:10.29130/dubited.1472422
Chicago Güven Çıtır, Aysun, Serkan Toros, and Fahrettin Öztürk. “Failure Behavior of Titanium/CFRP Hybrid Composites Under Tensile Loading”. Duzce University Journal of Science and Technology 12, no. 4 (October 2024): 2315-29. https://doi.org/10.29130/dubited.1472422.
EndNote Güven Çıtır A, Toros S, Öztürk F (October 1, 2024) Failure Behavior of Titanium/CFRP Hybrid Composites Under Tensile Loading. Duzce University Journal of Science and Technology 12 4 2315–2329.
IEEE A. Güven Çıtır, S. Toros, and F. Öztürk, “Failure Behavior of Titanium/CFRP Hybrid Composites Under Tensile Loading”, DUBİTED, vol. 12, no. 4, pp. 2315–2329, 2024, doi: 10.29130/dubited.1472422.
ISNAD Güven Çıtır, Aysun et al. “Failure Behavior of Titanium/CFRP Hybrid Composites Under Tensile Loading”. Duzce University Journal of Science and Technology 12/4 (October 2024), 2315-2329. https://doi.org/10.29130/dubited.1472422.
JAMA Güven Çıtır A, Toros S, Öztürk F. Failure Behavior of Titanium/CFRP Hybrid Composites Under Tensile Loading. DUBİTED. 2024;12:2315–2329.
MLA Güven Çıtır, Aysun et al. “Failure Behavior of Titanium/CFRP Hybrid Composites Under Tensile Loading”. Duzce University Journal of Science and Technology, vol. 12, no. 4, 2024, pp. 2315-29, doi:10.29130/dubited.1472422.
Vancouver Güven Çıtır A, Toros S, Öztürk F. Failure Behavior of Titanium/CFRP Hybrid Composites Under Tensile Loading. DUBİTED. 2024;12(4):2315-29.