Research Article
BibTex RIS Cite

Analitik Hiyerarşi Prosesiyle İçten Yanmalı Motorlar İçin Alternatif Yakıt Özelliklerinin Değerlendirilmesi

Year 2019, Volume: 8 Issue: 3, 21 - 34, 31.12.2019

Abstract

Uzun süredir içten yanmalı motorlarda benzin ve motorin yakıt olarak kullanılmaktadır. Ancak değişken yağ fiyatlarının yanısıra azalan yakıt kaynakları insanları alternative yakıt kaynakları edinmeye itmektedir. Sürdürülebilir yakıtlar, havayı daha az kirleten, daha az karbon salınımına yol açan güç tüketimini değiştirebilen çeşitli yakıtlardır. Otoriteler yakıtların performansı ve özellikleri hakkındaki bilgi eksikliği nedeniyle içten yanmalı motorların alternatif yakıtları için karar vermekte zorlanmaktadırlar. Bununla birlikte, içten yanmalı motorlar için en uygun yakıt seçeneğinin doğru seçimi, nakliye sırasında ciddi çevresel sorunları ve aşırı enerji tüketimini etkili bir şekilde azaltabilir.

Bu çalışmada, değişik tipteki sıvı yakıt seçeneklerinden hangisinin içten yanmalı motorlar için uygun olduğu değerlendirilmiştir. Bu makalede, kullanılan nicel değerlendirme modeli, karar vericilere yakın gelecekte akaryakıt politikası ile ilgili konularda önemli stratejik karar alma süreçlerinde kullanılacak bir araç sunmaktadır. Uygulanan model, karar alma sürecinin ilerlemesine katkıda bulunabilecek nicel sonuçlar vermektedir.

References

  • Abdullah, L., Najib, L., 2016. Sustainable energy planning decision using the intuitionistic fuzzy analytic hierarchy process: choosing energy technology in Malaysia. Int. J. Sustain. Energ. 35: (4), 360–377.
  • Accessed: http://www.methanol.org/Energy/Resources/Alternative--‐Fuel/Alt--‐Fuel--‐Properties.aspx American Petroleum Institute (API), Alcohols and Ethers, Publication No.4261, 3rd ed. (Washington, DC, June 2001), Table 2.
  • American Petroleum Institute (API), 2001. Alcohols and Ethers, Publication No.4261, 3rd ed. (Washington, DC, June), Table B-1.
  • Balo, F., Yucel H.L., 2013. Assessment of thermal performance of green building materials produced with plant oils, International Journal of Material Science (IJMSCI) 3 September (3): 118-129.
  • Balo, F., 2010. Development of the insulation materials from coal fly ash, perlite, clay and linseed oil, Ceramics-Silikaty 54: (2), 182-191
  • Beer, T., Grant, T., Morgan, G,. Lapszewicz, J., Anyon, P., Edwards, J., Nelson, P., Watson, H., & Williams, D., 2011. Comparison of Transport Fuels on the Stage 2 Study of Life-Cycle Emissions Analysis of Alternative Fuels for Heavy Vehicles, Australian Greenhouse Offıce, Southern Cross Institute of Health Research, (EV45A/2/F3C), Book, Melbourne University
  • Brey, J.J., Contreras, I., Carazo, A.F., Brey, R., Hernandez-Diaz, A,G,, Castro, A., 2007 Evaluation of automobiles with alternative fuels utilizing multi criteria techniques. J Power Sources 169: 213–9. Clean cities alernative fuel price report, 2017. Department of energy, Energy efficiency &renewable energy, July.
  • Demirbas, A., 2017. Competitive liquid biofuels from biomass, Applied Energy 2011; 88:17–28 DOE Stanford University, College of the desert and green econometric research
  • Energy Information Administration (EIA),2006a. Monthly Energy Review. Summary for 2006.
  • Energy Information Administration (EIA), 2016b. International Energy Outlook, 2016. U.S. Energy Information Administration <http://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf> (last retrieved on February 2, 2017).
  • Fazeli, R., Leal, V., Sousa, J.P., 2011. A multi-criteria evaluation framework for alternative light-duty vehicles technologies. Int J Multicrit Decis Making 1: 230–51.
  • Festel, G., Würmseher, M., Rammer, C., Boles, E., Bellof, M., 2014. Modeling production cost scenarios for biofuels and fossil fuels in Europe. J Clean Prod 66(0): 242-253.
  • Frank, E.D., Han, J., Palou-Rivera, I., Elgowainy, A., Wang, M.Q. 2011. Life-cycle analysis of algal lipid fuels with the GREET model. Energy Systems Division, Argonne National Laboratory; Available from: https://greet.es.anl.gov
  • Greenhouse Gases, 2013. Regulated Emissions, and Energy use in Transportation (GREET) Model, version 1. Input Fuel Specifications. Argonne National Laboratory. Chicago, IL.
  • Heywood, JB., 1988. Internal combustion engine fundamentals. McGraw Hill Inc. New York. 1988.
  • Huiling, L., Bing, LX., Hong, W., Jingdun, J., 2013. Biomass resources and their bio energy potential estimation: a review. Renew Sustain Energy Rev 2013;26:344–52.
  • Kelly, K., Eudy, L., and Coburn, T., 1999. Light--‐Duty Alternative Fuel Vehicles: Federal Test Procedure Emissions Results. Report of National Renewable Energy Laboratory (NREL), NREL/TP--‐540--‐25818.
  • Köne, A., Buke, T., 2007. An Analytical Network Process (ANP) evaluation of alternative fuels for electricity generation in Turkey, Energy Policy 35: 5220–5228
  • Lanjewar, P.B., Rao, R.V., Kale, A.V., 2015. Assessment of alternative fuels for transportation using a hybrid graph theory and analytic hierarchy process method. Fuel 154: 9–16.
  • McCormick, R.L., Williams, A., Ireland, J., Brimhall, M., and Hayes, R.R., 2006. Effects of Biodiesel Blends on Vehicle Emissions. NREL Milestone Report NREL/MP--‐540--‐40554.
  • McCormick, R.L., 2009. Biodiesel Handling and Use Guidelines—Fourth Edition, National Renewable Energy Laboratory. Methanol Institute. Fuel Properties, 2019.
  • Mohamadabadi, H.S., Tichkowsky, G., Kumar, A., 2009. Development of a multi-criteria assessment model for ranking of renewable and non-renewable transportation fuel vehicles. Energy 34:112–25.
  • Montajabiha, M., 2016. An extended Promethe II multi-criteria group decision making technique based on intuitionistic fuzzy logic for sustainable energy planning. Group Decis. Negot. 25: (2), 221–244
  • Murray, J., Lane, B., Lillie, K., and McCallum, J., 2000. An Assessment of the Emissions Performance of Alternative and Conventional Fuels. Report of the Alternative Fuels Group of the Cleaner Vehicles Task Force. Norwich, UK.
  • Owen, K., and Coley, T., 1995. Automotive Fuels Reference Book: Second Edition. Society of Automotive Engineers, Inc. Warrendale, PA.
  • Papalexandrou, M.A, Pilavachi, P.A., 2008. Chatzimouratidis, AI., 2008. Evaluation of liquid biofuels using the analytic hierarchy process. Process Saf Environ Prot. 86 (5): 360–74.
  • Paul, S., Sarkar, B., Bose, P.J., 2015. Eclectic decision for the selection of tree borne oil (TBO) as alternative fuel for internal combustion engine. Renew. Sustain. Energy Rev. 48: 256–263.
  • Peitao, Z., Yafei, S., Shifu, G., Zhenqian, C., Kunio, Y., 2014. Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment. Appl Energy 131:345–67.
  • Petroleum Product Surveys: Motor Gasoline, Summer 1986. Winter 1986/1987. National Institute for Petroleum and Energy Research.
  • Poh, K.L., Ang, B.W., 1999. Transportation fuels and policy for Singapore: an AHP planning approach. Comput. Ind. Eng. 37(3) : 507–25
  • Queddeng, E.A., 2005. Decision Analysis Using Value-Focused Thinking to Select Renewable Alternative Fuels, Air University, Thesis, March
  • Ren, J., Liang, H., 2017. Measuring the sustainability of marine fuels: a fuzzy group multi-criteria decision making approach. Transp. Res. Part D Transp. Environ. 54: 12–29.
  • Ren, J., Lützen, M.,2017. Selection of sustainable alternative energy source for shipping: multi-criteria decision making under incomplete information. Renew. Sustain. Energy Rev. 74, 1003–1019.
  • Nocera, S., and Cavallaro, F., 2016. The competitiveness of alternative transport fuels for CO2 emissions, Transport Policy 50, 1–14
  • Sadeghinezhad, E., Kazi, S.N., Sadeghinejad, F., Badarudin, A., Mehrali, M., Sadri, R., Safaei, R.M., 2014. A comprehensive literature review of bio-fuel performance in internal combustion engine and relevant costs involvement, Renewable and Sustainable Energy Reviews 30:29–44.
  • Sakthivel, G., Ilangkumaran, M., Gaikward, A., 2015. A hybrid multi-criteria decision modeling approach for the best biodiesel blend selection based on ANP-TOPSIS analysis. Ain Shams Eng. J. 2015; 6 (1): 239–256.
  • Sangeeta, MS., Pande, M., Rani, M., Gakhar, R., Sharma, M., et al. 2014. Alternative fuels: an overview of current trends and scope for future. Renew Sustain Energy Rev 32:697–712.
  • Sehatpour, M.H., Kazemi, A, Sehatpour, H., 2017. Evaluation of alternative fuels for light-duty vehicles in Iran using a multi-criteria approach. Renew. Sustain. Energy Rev. 72: 295–310.
  • Selvaratnam ,T., Pegallapati, A.K., Reddy, H., Kanapathipillai, N., Nirmalakhandan, N., Deng, S., et al. 2015. Algal biofuels from urban wastewaters: maximizing biomass yield using nutrients recycled from hydrothermal processing of biomass. Bioresour Technol 182: 232–8.
  • Sheehan, J., Camobreco, V., Duffield, J., Graboski, M., and Shapouri, H., 1998. An Overview of Biodiesel and Petroleum Diesel Life Cycles. Report of National Renewable Energy Laboratory (NREL) and US-Department of Energy (DOE).
  • Sobrino, FH, Monroy, CR., Perez, JLH., 2011. Biofuels and fossil fuels: life cycle analysis (LCA) optimisation through productive resources maximization. Renew Sustain Energy Rev 15(6):2621-2628.
  • Streimikiene, D, Balezˇentis, T., Balezˇentiene, L., 2013. Comparative assessment of road transport technologies. Renew Sustain Energy Rev; 20: 611–8.
  • The National Biodiesel Board website reports that Accessed, 2016. (http://www.biodiesel.org/using-- ‐biodiesel/oem--‐information/oem--‐statement--‐summary--‐chart)
  • Tsita, K.G., Pilavachi, P.A., 2012. Evaluation of alternative fuels for the Greek road transport sector using the analytic hierarchy process. Energy Policy 48:677–86.
  • Wang, J., Bi P., Zhang, Y., Xue, H., Jiang, P., Wu, X., et al. 2015. Preparation of jet fuel range hydrocarbons by catalytic transformation of bio-oil derived from fast pyrolysis of straw stalk. Energy 8:488–99.
  • Wang, M., 2005. Energy and Greenhouse Gas Emissions Impacts of Fuel Ethanol. Presentation to the NGCA Renewable Fuels Forum, August 23, Argonne National Laboratory. Chicago, IL.
  • Wang, S., Wang, Y., Q Cai, Q., Guo, Z., 2014. Production of biogasoline by Co-cracking of acetic acid in bio-oil and ethanol. Chin J Chem Eng 22(1): 98–103. U.S Department of Energy, Energy Efficiency & Renewable Energy, 2019, Available from: www.afdc.energy.gov
  • Xie, X., Wang, M., Han, J., 2011. Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer_Tropsch diesel from coal and cellulosic biomass. Environ Sci Technol 45(7): 3047-3053.
  • Zhang ,T., 2015. Possibilities of Alternative Vehicle Fuels -A literature review, Thesis, Energy Systems Bachelor Program in Energy Systems, Faculty of engineering and sustainable development, Department of Building, Energy and Environmental Engineering,
  • Zhou, Z., Jiang, H., Qin, L., 2007. Life cycle sustainability assessment of fuels. Fuel 86:256–63.

Evaluation of Alternative Fuel Characteristics for Internal Combustion Engines with Analytical Hierarchy Process

Year 2019, Volume: 8 Issue: 3, 21 - 34, 31.12.2019

Abstract

For a long time, the diesel and gasoline have been utilized as fuel for internal combustion engines. But the diminishing oil supplies along with the variable oil prices drive people to obtain alternative sources for fuel. The sustainable fuel options may alter power consumption that results in less pollution, less carbon and more variety of fuel supply. It is generally a challenging task for decision makers to determine the best feasible fuel for internal combustion engines among multiple choices because of the complicated task of considering various attributes of performances and the lack of information available. However, the right choice of the most feasible fuel option for internal combustion engines can efficiently mitigate serious environmental troubles and over-consumption of energy during transportation.

In this study, the diverse types of liquid fuel options for internal combustion engines are compared in terms of critical characteristics determined within the scope of this research. In this article, the quantitative evaluation model utilized provides decision makers with a tool to be utilized during important strategic decision-making processes on issues with regard to fuel policy in the near future. The applied model presents quantitative conclusions that can contribute to enhance the decision-making progression.

References

  • Abdullah, L., Najib, L., 2016. Sustainable energy planning decision using the intuitionistic fuzzy analytic hierarchy process: choosing energy technology in Malaysia. Int. J. Sustain. Energ. 35: (4), 360–377.
  • Accessed: http://www.methanol.org/Energy/Resources/Alternative--‐Fuel/Alt--‐Fuel--‐Properties.aspx American Petroleum Institute (API), Alcohols and Ethers, Publication No.4261, 3rd ed. (Washington, DC, June 2001), Table 2.
  • American Petroleum Institute (API), 2001. Alcohols and Ethers, Publication No.4261, 3rd ed. (Washington, DC, June), Table B-1.
  • Balo, F., Yucel H.L., 2013. Assessment of thermal performance of green building materials produced with plant oils, International Journal of Material Science (IJMSCI) 3 September (3): 118-129.
  • Balo, F., 2010. Development of the insulation materials from coal fly ash, perlite, clay and linseed oil, Ceramics-Silikaty 54: (2), 182-191
  • Beer, T., Grant, T., Morgan, G,. Lapszewicz, J., Anyon, P., Edwards, J., Nelson, P., Watson, H., & Williams, D., 2011. Comparison of Transport Fuels on the Stage 2 Study of Life-Cycle Emissions Analysis of Alternative Fuels for Heavy Vehicles, Australian Greenhouse Offıce, Southern Cross Institute of Health Research, (EV45A/2/F3C), Book, Melbourne University
  • Brey, J.J., Contreras, I., Carazo, A.F., Brey, R., Hernandez-Diaz, A,G,, Castro, A., 2007 Evaluation of automobiles with alternative fuels utilizing multi criteria techniques. J Power Sources 169: 213–9. Clean cities alernative fuel price report, 2017. Department of energy, Energy efficiency &renewable energy, July.
  • Demirbas, A., 2017. Competitive liquid biofuels from biomass, Applied Energy 2011; 88:17–28 DOE Stanford University, College of the desert and green econometric research
  • Energy Information Administration (EIA),2006a. Monthly Energy Review. Summary for 2006.
  • Energy Information Administration (EIA), 2016b. International Energy Outlook, 2016. U.S. Energy Information Administration <http://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf> (last retrieved on February 2, 2017).
  • Fazeli, R., Leal, V., Sousa, J.P., 2011. A multi-criteria evaluation framework for alternative light-duty vehicles technologies. Int J Multicrit Decis Making 1: 230–51.
  • Festel, G., Würmseher, M., Rammer, C., Boles, E., Bellof, M., 2014. Modeling production cost scenarios for biofuels and fossil fuels in Europe. J Clean Prod 66(0): 242-253.
  • Frank, E.D., Han, J., Palou-Rivera, I., Elgowainy, A., Wang, M.Q. 2011. Life-cycle analysis of algal lipid fuels with the GREET model. Energy Systems Division, Argonne National Laboratory; Available from: https://greet.es.anl.gov
  • Greenhouse Gases, 2013. Regulated Emissions, and Energy use in Transportation (GREET) Model, version 1. Input Fuel Specifications. Argonne National Laboratory. Chicago, IL.
  • Heywood, JB., 1988. Internal combustion engine fundamentals. McGraw Hill Inc. New York. 1988.
  • Huiling, L., Bing, LX., Hong, W., Jingdun, J., 2013. Biomass resources and their bio energy potential estimation: a review. Renew Sustain Energy Rev 2013;26:344–52.
  • Kelly, K., Eudy, L., and Coburn, T., 1999. Light--‐Duty Alternative Fuel Vehicles: Federal Test Procedure Emissions Results. Report of National Renewable Energy Laboratory (NREL), NREL/TP--‐540--‐25818.
  • Köne, A., Buke, T., 2007. An Analytical Network Process (ANP) evaluation of alternative fuels for electricity generation in Turkey, Energy Policy 35: 5220–5228
  • Lanjewar, P.B., Rao, R.V., Kale, A.V., 2015. Assessment of alternative fuels for transportation using a hybrid graph theory and analytic hierarchy process method. Fuel 154: 9–16.
  • McCormick, R.L., Williams, A., Ireland, J., Brimhall, M., and Hayes, R.R., 2006. Effects of Biodiesel Blends on Vehicle Emissions. NREL Milestone Report NREL/MP--‐540--‐40554.
  • McCormick, R.L., 2009. Biodiesel Handling and Use Guidelines—Fourth Edition, National Renewable Energy Laboratory. Methanol Institute. Fuel Properties, 2019.
  • Mohamadabadi, H.S., Tichkowsky, G., Kumar, A., 2009. Development of a multi-criteria assessment model for ranking of renewable and non-renewable transportation fuel vehicles. Energy 34:112–25.
  • Montajabiha, M., 2016. An extended Promethe II multi-criteria group decision making technique based on intuitionistic fuzzy logic for sustainable energy planning. Group Decis. Negot. 25: (2), 221–244
  • Murray, J., Lane, B., Lillie, K., and McCallum, J., 2000. An Assessment of the Emissions Performance of Alternative and Conventional Fuels. Report of the Alternative Fuels Group of the Cleaner Vehicles Task Force. Norwich, UK.
  • Owen, K., and Coley, T., 1995. Automotive Fuels Reference Book: Second Edition. Society of Automotive Engineers, Inc. Warrendale, PA.
  • Papalexandrou, M.A, Pilavachi, P.A., 2008. Chatzimouratidis, AI., 2008. Evaluation of liquid biofuels using the analytic hierarchy process. Process Saf Environ Prot. 86 (5): 360–74.
  • Paul, S., Sarkar, B., Bose, P.J., 2015. Eclectic decision for the selection of tree borne oil (TBO) as alternative fuel for internal combustion engine. Renew. Sustain. Energy Rev. 48: 256–263.
  • Peitao, Z., Yafei, S., Shifu, G., Zhenqian, C., Kunio, Y., 2014. Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment. Appl Energy 131:345–67.
  • Petroleum Product Surveys: Motor Gasoline, Summer 1986. Winter 1986/1987. National Institute for Petroleum and Energy Research.
  • Poh, K.L., Ang, B.W., 1999. Transportation fuels and policy for Singapore: an AHP planning approach. Comput. Ind. Eng. 37(3) : 507–25
  • Queddeng, E.A., 2005. Decision Analysis Using Value-Focused Thinking to Select Renewable Alternative Fuels, Air University, Thesis, March
  • Ren, J., Liang, H., 2017. Measuring the sustainability of marine fuels: a fuzzy group multi-criteria decision making approach. Transp. Res. Part D Transp. Environ. 54: 12–29.
  • Ren, J., Lützen, M.,2017. Selection of sustainable alternative energy source for shipping: multi-criteria decision making under incomplete information. Renew. Sustain. Energy Rev. 74, 1003–1019.
  • Nocera, S., and Cavallaro, F., 2016. The competitiveness of alternative transport fuels for CO2 emissions, Transport Policy 50, 1–14
  • Sadeghinezhad, E., Kazi, S.N., Sadeghinejad, F., Badarudin, A., Mehrali, M., Sadri, R., Safaei, R.M., 2014. A comprehensive literature review of bio-fuel performance in internal combustion engine and relevant costs involvement, Renewable and Sustainable Energy Reviews 30:29–44.
  • Sakthivel, G., Ilangkumaran, M., Gaikward, A., 2015. A hybrid multi-criteria decision modeling approach for the best biodiesel blend selection based on ANP-TOPSIS analysis. Ain Shams Eng. J. 2015; 6 (1): 239–256.
  • Sangeeta, MS., Pande, M., Rani, M., Gakhar, R., Sharma, M., et al. 2014. Alternative fuels: an overview of current trends and scope for future. Renew Sustain Energy Rev 32:697–712.
  • Sehatpour, M.H., Kazemi, A, Sehatpour, H., 2017. Evaluation of alternative fuels for light-duty vehicles in Iran using a multi-criteria approach. Renew. Sustain. Energy Rev. 72: 295–310.
  • Selvaratnam ,T., Pegallapati, A.K., Reddy, H., Kanapathipillai, N., Nirmalakhandan, N., Deng, S., et al. 2015. Algal biofuels from urban wastewaters: maximizing biomass yield using nutrients recycled from hydrothermal processing of biomass. Bioresour Technol 182: 232–8.
  • Sheehan, J., Camobreco, V., Duffield, J., Graboski, M., and Shapouri, H., 1998. An Overview of Biodiesel and Petroleum Diesel Life Cycles. Report of National Renewable Energy Laboratory (NREL) and US-Department of Energy (DOE).
  • Sobrino, FH, Monroy, CR., Perez, JLH., 2011. Biofuels and fossil fuels: life cycle analysis (LCA) optimisation through productive resources maximization. Renew Sustain Energy Rev 15(6):2621-2628.
  • Streimikiene, D, Balezˇentis, T., Balezˇentiene, L., 2013. Comparative assessment of road transport technologies. Renew Sustain Energy Rev; 20: 611–8.
  • The National Biodiesel Board website reports that Accessed, 2016. (http://www.biodiesel.org/using-- ‐biodiesel/oem--‐information/oem--‐statement--‐summary--‐chart)
  • Tsita, K.G., Pilavachi, P.A., 2012. Evaluation of alternative fuels for the Greek road transport sector using the analytic hierarchy process. Energy Policy 48:677–86.
  • Wang, J., Bi P., Zhang, Y., Xue, H., Jiang, P., Wu, X., et al. 2015. Preparation of jet fuel range hydrocarbons by catalytic transformation of bio-oil derived from fast pyrolysis of straw stalk. Energy 8:488–99.
  • Wang, M., 2005. Energy and Greenhouse Gas Emissions Impacts of Fuel Ethanol. Presentation to the NGCA Renewable Fuels Forum, August 23, Argonne National Laboratory. Chicago, IL.
  • Wang, S., Wang, Y., Q Cai, Q., Guo, Z., 2014. Production of biogasoline by Co-cracking of acetic acid in bio-oil and ethanol. Chin J Chem Eng 22(1): 98–103. U.S Department of Energy, Energy Efficiency & Renewable Energy, 2019, Available from: www.afdc.energy.gov
  • Xie, X., Wang, M., Han, J., 2011. Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer_Tropsch diesel from coal and cellulosic biomass. Environ Sci Technol 45(7): 3047-3053.
  • Zhang ,T., 2015. Possibilities of Alternative Vehicle Fuels -A literature review, Thesis, Energy Systems Bachelor Program in Energy Systems, Faculty of engineering and sustainable development, Department of Building, Energy and Environmental Engineering,
  • Zhou, Z., Jiang, H., Qin, L., 2007. Life cycle sustainability assessment of fuels. Fuel 86:256–63.
There are 50 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Research Articles
Authors

Hasan Bayındır 0000-0002-2850-1953

Publication Date December 31, 2019
Submission Date October 5, 2019
Published in Issue Year 2019 Volume: 8 Issue: 3

Cite

IEEE H. Bayındır, “Evaluation of Alternative Fuel Characteristics for Internal Combustion Engines with Analytical Hierarchy Process”, DUFED, vol. 8, no. 3, pp. 21–34, 2019.


DUFED is indexed/abstracted/enlisted in

Google Scholar | CABI - CAB Abstracts and Global Health | CAS Chemical Abstracts Service | ROAD Directory of Open Access Scholarly Resources | Index Copernicus | CiteFactor Academic Scientific Journals | BASE Bielefeld Academic Search Engine | Open AIRE | IJIFACTOR | ASOS Index | Paperity Open Science Aggregated | I2OR International Institute of Organized Research | SJIF Scientific Journal Impact Factor | Advanced Science Index | DRJI Directory of Research Journals Indexing | SOBİAD | AcarIndex | SIS Scientific Indexing Services | Crossref | Harman Türkiye Akademik Arşivi | AccessOn | Dimensions | Wizdom | OUCI The Open Ukrainian Citation Index | WorldCat | Scilit | ASCI Asian Science Citation Index

  cc.logo.large.png       Creative Commons License

28576
DUFED is a diamond open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. In addition, authors are not charged article processing fees or publication fees - no fees whatsoever. Importantly, authors retain the copyright of their work and allow it to be shared and reused, provided that it is correctly cited.

1024px-DOI_logo.svg.png https://doi.org/10.55007/dufed.xxxxxxx