Review
BibTex RIS Cite

Reactor types used in biological nitrate removal from groundwater

Year 2019, Volume: 8 Issue: 3, 77 - 83, 31.12.2019

Abstract

Nitrate is the most common pollutant in surface and groundwater and its main sources are nitrogenous fertilizers and wastewater discharges without advance treatment. Because of the health problems caused, effective removal methods should be investigated. Nitrate remediation methods are generally divided into two main groups as destruction and separation. Biological methods are preferred for reasons such as there is no concentrate, no need for expensive catalysts and fast reaction kinetics. In biological methods, nitrate reduction occurs in the presence of an electron donor, and the process is called autotrophic or heterotrophic, depending on the used electron source. Both processes have disadvantages when used alone. However, when used together, these disadvantages can be eliminated and more effective nitrate removal can be achieved. In this study, single and multiple reactor systems using biological methods were investigated and advantages and disadvantages were evaluated.

References

  • Ş. Aslan, A. Türkman, 2003. “İçme sularindan biyolojik denitrifikasyon yöntemiyle nitrat gideriminde ortam koşullarinin etkisi,” Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 5, 17-25.
  • [2] D. Ucar, Cokgor, E. U., Sahinkaya, E., Cetin, U., Bereketoglu, C., Calimlioglu, B. Yurtsever, A. 2017, "Simultaneous nitrate and perchlorate removal from groundwater by heterotrophic-autotrophic sequential system,” Int. Biodeterior. Biodegradation, 116, 83–90.
  • [3] M. I. Yesilnacar, M. S. Gulluoglu, 2008. “Hydrochemical characteristics and the effects of irrigation on groundwater quality in Harran Plain, GAP Project, Turkey,” Environ. Geol. 54, 183–196,
  • [4] M. I. Yesilnacar, E. Sahinkaya, M. Naz, B. Ozkaya, 2008. “Neural network prediction of nitrate in groundwater of Harran Plain, Turkey,” Environ. Geol., 56, 19–25,
  • [5] H. Il Park, D. K. Kim, Y.-J. Choi, D. Pak, 2005. “Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor,” Process Biochem., 40, 3383–3388.
  • [6] H. S. Moon, S. W. Chang, K. Nam, J. Choe, J. Y. Kim, 2006. “Effect of reactive media composition and co-contaminants on sulfur-based autotrophic denitrification,” Environ. Pollut., 144, 3, 802–807,
  • [7] C. Della Rocca, V. Belgiorno, S. Meriç, 2007. “Overview of in-situ applicable nitrate removal processes,” Desalination, 204, 1-3, 46–62,
  • [8] D. Ucar, E. U. Cokgor, E. Şahinkaya, 2016. “Simultaneous nitrate and perchlorate reduction using sulfur-based autotrophic and heterotrophic denitrifying processes,” J. Chem. Technol. Biotechnol., 9, 5, 1471–1477,
  • [9] H. S. Moon, D. Y. Shin, K. Nam , J. Y. Kim, 2008. “A long-term performance test on an autotrophic denitrification column for application as a permeable reactive barrier,” Chemosphere, 73, 723–728,
  • [10] R. Sierra-Alvarez, R. Beristain-Cardoso, M. Salazar, J. Gomez, E. Razo-Flores, J. A. Field, 2007. “Chemolithotrophic denitrification with elemental sulfur for groundwater treatment,” Water Res., 41, 1253–1262,
  • [11] V. Matějů, S. Čižinská, J. Krejčí, T. Janoch, 1992. “Biological water denitrification—a review,” Enzyme Microb. Technol., 14, 3, 170–183,
  • [12] E. Sahinkaya, A. Yurtsever, Ö. Aktaş, D. Ucar, Z. Wang, 2015. “Sulfur-based autotrophic denitrification of drinking water using a membrane bioreactor,” Chem. Eng. J., 268, 180–186,
  • [13] E. Sahinkaya, A. Yurtsever, D. Ucar, 2017. “A novel elemental sulfur-based mixotrophic denitrifying membrane bioreactor for simultaneous Cr(VI) and nitrate reduction,” J. Hazard. Mater., 324, 2, 15–21,
  • [14] A. Kilic, E. Sahinkaya, O. Cinar, 2014. “Kinetics of autotrophic denitrification process and the impact of sulphur/limestone ratio on the process performance,” Environ. Technol., 35, 22, 2796–2804,

Yeraltı Sularından Biyolojik Nitrat Giderimde Kullanılan Reaktör Tipleri

Year 2019, Volume: 8 Issue: 3, 77 - 83, 31.12.2019

Abstract

Yüzeysel ve yeraltı sularında, en yaygın görülen kirletici nitrat olup başlıca kaynakları azotlu gübreler ve ileri arıtım yapılmamış atıksulardır. Sebep olduğu sağlık sorunları nedeniyle etkili giderim yöntemlerinin araştırılması gerekmektedir. Nitrat giderim yöntemleri genel olarak giderim ve ayırım olarak iki ana gruba ayrılmaktadır. Biyolojik yöntemler, konsantre oluşturmaması, pahalı katalizörlere ihtiyaç duymaması ve hızlı reaksiyon kinetikleri gibi nedenlerden dolayı tercih edilmektedir. Biyolojik yöntemlerde bir elektron verici varlığında nitratın indirgenmesi gerçekleşir ve elektron kaynağının organik ya da inorganik olmasına göre süreç ototrofik ya da heterotrofik olarak isimlendirilir. Her iki prosesin tek başlarına kullanılmaları durumunda dezavantajları vardır. Ancak birlikte kullanıldıkları durumlarda bu dezavantajlar elimine edilebilir ve daha etkin nitrat giderimi sağlanabilir. Bu çalışmada, bu kapsamda, biyolojik yöntemlerin kullanıldığı tekli ve çoklu reaktör sistemleri araştırılmış ve avantaj - dezavantajları ile değerlendirilmiştir.

References

  • Ş. Aslan, A. Türkman, 2003. “İçme sularindan biyolojik denitrifikasyon yöntemiyle nitrat gideriminde ortam koşullarinin etkisi,” Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 5, 17-25.
  • [2] D. Ucar, Cokgor, E. U., Sahinkaya, E., Cetin, U., Bereketoglu, C., Calimlioglu, B. Yurtsever, A. 2017, "Simultaneous nitrate and perchlorate removal from groundwater by heterotrophic-autotrophic sequential system,” Int. Biodeterior. Biodegradation, 116, 83–90.
  • [3] M. I. Yesilnacar, M. S. Gulluoglu, 2008. “Hydrochemical characteristics and the effects of irrigation on groundwater quality in Harran Plain, GAP Project, Turkey,” Environ. Geol. 54, 183–196,
  • [4] M. I. Yesilnacar, E. Sahinkaya, M. Naz, B. Ozkaya, 2008. “Neural network prediction of nitrate in groundwater of Harran Plain, Turkey,” Environ. Geol., 56, 19–25,
  • [5] H. Il Park, D. K. Kim, Y.-J. Choi, D. Pak, 2005. “Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor,” Process Biochem., 40, 3383–3388.
  • [6] H. S. Moon, S. W. Chang, K. Nam, J. Choe, J. Y. Kim, 2006. “Effect of reactive media composition and co-contaminants on sulfur-based autotrophic denitrification,” Environ. Pollut., 144, 3, 802–807,
  • [7] C. Della Rocca, V. Belgiorno, S. Meriç, 2007. “Overview of in-situ applicable nitrate removal processes,” Desalination, 204, 1-3, 46–62,
  • [8] D. Ucar, E. U. Cokgor, E. Şahinkaya, 2016. “Simultaneous nitrate and perchlorate reduction using sulfur-based autotrophic and heterotrophic denitrifying processes,” J. Chem. Technol. Biotechnol., 9, 5, 1471–1477,
  • [9] H. S. Moon, D. Y. Shin, K. Nam , J. Y. Kim, 2008. “A long-term performance test on an autotrophic denitrification column for application as a permeable reactive barrier,” Chemosphere, 73, 723–728,
  • [10] R. Sierra-Alvarez, R. Beristain-Cardoso, M. Salazar, J. Gomez, E. Razo-Flores, J. A. Field, 2007. “Chemolithotrophic denitrification with elemental sulfur for groundwater treatment,” Water Res., 41, 1253–1262,
  • [11] V. Matějů, S. Čižinská, J. Krejčí, T. Janoch, 1992. “Biological water denitrification—a review,” Enzyme Microb. Technol., 14, 3, 170–183,
  • [12] E. Sahinkaya, A. Yurtsever, Ö. Aktaş, D. Ucar, Z. Wang, 2015. “Sulfur-based autotrophic denitrification of drinking water using a membrane bioreactor,” Chem. Eng. J., 268, 180–186,
  • [13] E. Sahinkaya, A. Yurtsever, D. Ucar, 2017. “A novel elemental sulfur-based mixotrophic denitrifying membrane bioreactor for simultaneous Cr(VI) and nitrate reduction,” J. Hazard. Mater., 324, 2, 15–21,
  • [14] A. Kilic, E. Sahinkaya, O. Cinar, 2014. “Kinetics of autotrophic denitrification process and the impact of sulphur/limestone ratio on the process performance,” Environ. Technol., 35, 22, 2796–2804,
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Review Article
Authors

Amine Yücel 0000-0002-7571-3078

Deniz Uçar 0000-0002-0536-6250

Özlem Demir 0000-0002-0727-1845

Publication Date December 31, 2019
Submission Date December 5, 2019
Published in Issue Year 2019 Volume: 8 Issue: 3

Cite

IEEE A. Yücel, D. Uçar, and Ö. Demir, “Yeraltı Sularından Biyolojik Nitrat Giderimde Kullanılan Reaktör Tipleri”, DUFED, vol. 8, no. 3, pp. 77–83, 2019.


DUFED is indexed/abstracted/enlisted in

Google Scholar | CABI - CAB Abstracts and Global Health | CAS Chemical Abstracts Service | ROAD Directory of Open Access Scholarly Resources | Index Copernicus | CiteFactor Academic Scientific Journals | BASE Bielefeld Academic Search Engine | Open AIRE | IJIFACTOR | ASOS Index | Paperity Open Science Aggregated | I2OR International Institute of Organized Research | SJIF Scientific Journal Impact Factor | Advanced Science Index | DRJI Directory of Research Journals Indexing | SOBİAD | AcarIndex | SIS Scientific Indexing Services | Crossref | Harman Türkiye Akademik Arşivi | AccessOn | Dimensions | Wizdom | OUCI The Open Ukrainian Citation Index | WorldCat | Scilit | ASCI Asian Science Citation Index

  cc.logo.large.png       Creative Commons License

28576
DUFED is a diamond open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. In addition, authors are not charged article processing fees or publication fees - no fees whatsoever. Importantly, authors retain the copyright of their work and allow it to be shared and reused, provided that it is correctly cited.

1024px-DOI_logo.svg.png https://doi.org/10.55007/dufed.xxxxxxx