Research Article
BibTex RIS Cite

Nanopartikül Takviyeli Polyester Nanokompozitin Termo-Fiziksel Özelliklerinin Karakterizasyonu

Year 2021, Volume: 10 Issue: 2, 121 - 132, 30.12.2021

Abstract

Bu araştırmada, nanopartiküller kullanılarak üretilen doymamış polyester (UP) nanokompozitinin bazı termal ve fiziksel özellikleri araştırılmıştır. Nanopartikül olarak Füme Silika (FS), silisyum karbür (SiC) ve grafen nanoplate (GNP) kullanılmıştır. Sentezlenen polyester nanokompozitlere kütlece %0.2, %0.4, %0.6, %0.8 ve %1.0 oranlarında nanopartikül takviye edilmiştir. Üretilen polyester nanokompozitin ısıl iletkenlik katsayısını GNP ve SiC nanopartikül takviyeleri sırasıyla yaklaşık %64 ve %39 oranında arttırırken, FS takviyesi %12.5 oranında azaltmıştır. SiC nanopartikül, polyester nanokompozitin Shore D sertliğini % 0.1 takviye edildiği numunede %5.26 oranında arttırmıştır. Bu oran % 0.1 takviyeli FS için %3.85 ve %0.4 GNP için %1.9 olmuştur. Ayrıca, SiC ve GNP takviyesi polyester nanokompozitin yoğunluğunu arttırırken, FS takviyesi kompozitin yoğunluğunu azaltmıştır. Numunelerin termal kararlılık sıralaması FS, GNP ve SiC takviyeli nanokompozitler olarak tespit edilmiştir. En düşük termal kararlılığa sahip numunenin UP olduğu belirlenmiştir. Termal kararlılık deneylerinde elde edilen sonuçlara göre, güçlendirilmiş nanokompozitlerin termal bozunma sırasındaki kütle kayıpları karşılaştırılmıştır. Polyester nanokompozitlerin termal bozunma davranışı kinetik denklem ile modellenmiştir. Deneysel ve teorik model sonuçları karşılaştırıldı ve doğrusal olmayan regresyon kullanılarak istatistiksel analiz ile korelasyon sayıları hesaplanmıştır.

References

  • S. Hörold, “Phosphorus flame retardants in thermoset resins,” Polym. Degrad. Stab., vol. 64, no. 3, pp. 427–431, 1999, doi: 10.1016/S0141-3910(98)00163-3.
  • T. D. Hapuarachchi and T. Peijs, “Aluminium trihydroxide in combination with ammonium polyphosphate as flame retardants for unsaturated polyester resin,” Express Polym. Lett., vol. 3, no. 11, pp. 743–751, 2009, doi: 10.3144/expresspolymlett.2009.92.
  • B. K. Kandola, L. Krishnan, and J. R. Ebdon, “Blends of unsaturated polyester and phenolic resins for application as fire-resistant matrices in fibre-reinforced composites: Effects of added flame retardants,” Polym. Degrad. Stab., vol. 106, pp. 129–137, 2014, doi: 10.1016/j.polymdegradstab.2013.12.021.
  • Y. Yu et al., “Modified montmorillonite combined with intumescent flame retardants on the flame retardancy and thermal stability properties of unsaturated polyester resins,” Polym. Adv. Technol., vol. 30, no. 4, pp. 998–1009, 2019, doi: 10.1002/pat.4533.
  • J. Reuter, L. Greiner, F. Schönberger, and M. Döring, “Synergistic flame retardant interplay of phosphorus containing flame retardants with aluminum trihydrate depending on the specific surface area in unsaturated polyester resin,” J. Appl. Polym. Sci., vol. 136, no. 13, pp. 1–8, 2019, doi: 10.1002/app.47270.
  • S. Nazaré, B. K. Kandola, and A. R. Horrocks, “Flame-retardant unsaturated polyester resin incorporating nanoclays,” Polym. Adv. Technol., vol. 17, no. 4, pp. 294–303, 2006, doi: 10.1002/pat.687.
  • E. Kużdżał, B. Cichy, E. Kicko-Walczak, and G. Rymarz, “Rheological and fire properties of a composite of unsaturated polyester resin and halogen-free flame retardants,” J. Appl. Polym. Sci., vol. 134, no. 2, pp. 1–7, 2017, doi: 10.1002/app.44371.
  • J. Sag, D. Goedderz, P. Kukla, L. Greiner, F. Schönberger, and M. Döring, “Phosphorus-containing flame retardants from biobased chemicals and their application in polyesters and epoxy resins,” Molecules, vol. 24, no. 20, 2019, doi: 10.3390/molecules24203746.
  • J. Reuter, L. Greiner, P. Kukla, and M. Döring, “Efficient flame retardant interplay of unsaturated polyester resin formulations based on ammonium polyphosphate,” Polym. Degrad. Stab., vol. 178, 2020, doi: 10.1016/j.polymdegradstab.2020.109134.
  • R. A. Ilyas et al., “Polymer composites filled with metal derivatives: A review of flame retardants,” Polymers (Basel)., vol. 13, no. 11, 2021, doi: 10.3390/polym13111701.
  • K. Wazarkar, M. Kathalewar, and A. Sabnis, “Flammability behavior of unsaturated polyesters modified with novel phosphorous containing flame retardants,” Polym. Compos., vol. 38, no. 7, pp. 1483–1491, 2017, doi: 10.1002/pc.23716.
  • M. Jiang, Y. Yu, and Z. Chen, “Environmentally Friendly Flame Retardant Systems for Unsaturated Polyester Resin,” IOP Conf. Ser. Earth Environ. Sci., vol. 170, no. 3, 2018, doi: 10.1088/1755-1315/170/3/032116
  • E. Kicko-Walczak and G. Rymarz, “Flame-Retardant Unsaturated Polyester Resins: An Overview of Past and Recent Developments,” Polyest. - Prod. Charact. Innov. Appl., 2018, doi: 10.5772/intechopen.72536.
  • E. S. Al-hassani, “Effect of Nano Carbon Tube on the Mechanical and Physical Properties of Composites Based on Resin Route,” Eng. Technol. J., vol. 36, no. 4, 2018, doi: 10.30684/etj.36.4a.7.
  • N. S. Particles and G. Fibers, “Some Mechanical Properties of Polymer Matrix Composites Reinforced by Nano Silica Particles and Glass Fibers,” Eng. Technol. J., vol. 36, no. 12A, 2018, doi: 10.30684/etj.36.12a.10.
  • A. Kurt, H. Andan, and M. Koca, “Synthesis and Characterization of a New Bithiazole-Containing Conjugated Polymer and its Thermal Decomposition Kinetics,” Maced. J. Chem. Chem. Eng., vol. 39, no. 2, pp. 227–237, 2020, doi: 10.20450/mjcce.2020.2025.
  • Y. S. Yang and L. Suspene, “Curing of unsaturated polyester resins: Viscosity studies and simulations in pre‐gel state,” Polym. Eng. Sci., vol. 31, no. 5, pp. 321–332, 1991, doi: 10.1002/pen.760310505.
  • M. Malik, V. Choudhary, and I. K. Varma, “Current status of unsaturated polyester resins,” J. Macromol. Sci. - Polym. Rev., vol. 40, no. 2–3, pp. 139–165, 2000, doi: 10.1081/MC-100100582.
  • L. Xu and L. J. Lee, “Kinetic analysis and mechanical properties of nanoclay reinforced unsaturated polyester (UP) resins cured at low temperatures,” Polym. Eng. Sci., vol. 45, no. 4, pp. 496–509, 2005, doi: 10.1002/pen.20309.
  • M. Poorabdollah, M. H. Beheshty, and M. Vafayan, “Kinetic modeling of nanoclay-reinforced unsaturated polyester resin,” Polym. Compos., vol. 32, no. 8, pp. 1265–1273, Aug. 2011, doi: https://doi.org/10.1002/pc.21146.
  • Y. J. Huang and J. S. Leu, “Curing of unsaturated polyester resins. Effects of temperature and initiator: 1. Low temperature reactions,” Polymer (Guildf)., vol. 34, no. 2, pp. 295–304, 1993, doi: 10.1016/0032-3861(93)90080-T.
  • M. G. Lu, M. J. Shim, and S. W. Kim, “Curing behavior of an unsaturated polyester system analyzed by Avrami equation,” Thermochim. Acta, vol. 323, no. 1–2, pp. 37–42, 1998, doi: 10.1016/s0040-6031(98)00506-1.
  • D. J. Suh, Y. T. Lim, and O. O. Park, “The property and formation mechanism of unsaturated polyester-layered silicate nanocomposite depending on the fabrication methods,” Polymer (Guildf)., vol. 41, no. 24, pp. 8557–8563, 2000, doi: 10.1016/S0032-3861(00)00216-0.
  • J. M. Kenny, A. Maffezzoli, and L. Nicolais, “A model for the thermal and chemorheological behavior of thermoset processing: (II) Unsaturated polyester based composites,” Compos. Sci. Technol., vol. 38, no. 4, pp. 339–358, 1990, doi: 10.1016/0266-3538(90)90020-6.
  • M. Lu, M. Shim, and S. Kim, “Reaction mechanism of an unsaturated polyester system containing thickeners,” Eur. Polym. J., vol. 37, no. 5, pp. 1075–1078, 2001, doi: 10.1016/S0014-3057(00)00198-1.
  • W. Li and L. J. Lee, “Low temperature cure of unsaturated polyester resins with thermoplastic additives: II. Structure formation and shrinkage control mechanism,” Polymer (Guildf)., vol. 41, no. 2, pp. 697–710, 2000, doi: 10.1016/S0032-3861(99)00178-0.
  • X. Ramis and J. M. Salla, “Effect of the inhibitor on the curing of an unsaturated polyester resin,” Polymer (Guildf)., vol. 36, no. 18, pp. 3511–3521, 1995, doi: 10.1016/0032-3861(95)92023-8.
  • X. Ramis and J. M. Salla, “Effect of the initiator content and temperature on the curing of an unsaturated polyester resin,” J. Polym. Sci. Part B Polym. Phys., vol. 37, no. 8, pp. 751–768, 1999, doi: 10.1002/(SICI)1099-0488(19990415)37:8<751::AID-POLB2>3.0.CO;2-V.
  • Y. J. Huang, T. J. Lu, and W. Hwu, “Curing of unsaturated polyester resins—effects of pressure,” Polym. Eng. Sci., vol. 33, no. 1, pp. 1–17, 1993, doi: 10.1002/pen.760330102.
  • M. Kinkelaar, B. Wang, and L. J. Lee, “Shrinkage behaviour of low-profile unsaturated polyester resins,” Polymer (Guildf)., vol. 35, no. 14, pp. 3011–3022, 1994, doi: 10.1016/0032-3861(94)90414-6.
  • K. Starost et al., “The effect of nanosilica (SiO2) and nanoalumina (Al2O3) reinforced polyester nanocomposites on aerosol nanoparticle emissions into the environment during automated drilling,” Aerosol Sci. Technol., vol. 51, no. 9, pp. 1035–1046, Sep. 2017, doi: 10.1080/02786826.2017.1330535.
  • S. Rajpoot, R. Malik, and Y. W. Kim, “Effects of polysiloxane on thermal conductivity and compressive strength of porous silica ceramics,” Ceram. Int., vol. 45, no. 17, Part A, pp. 21270–21277, 2019, doi: https://doi.org/10.1016/j.ceramint.2019.07.109.
  • E. Aydoğmuş and H. Arslanoğlu, “Kinetics of thermal decomposition of the polyester nanocomposites,” Pet. Sci. Technol., pp. 1–17, Jun. 2021, doi: 10.1080/10916466.2021.1937218.
  • S. Sivananthan, K. Ravi, and C. Samson Jerold Samuel, “Effect of SiC particles reinforcement on mechanical properties of aluminium 6061 alloy processed using stir casting route,” Mater. Today Proc., vol. 21, pp. 968–970, 2020, doi: https://doi.org/10.1016/j.matpr.2019.09.068.
  • G. Veerappan, M. Ravichandran, M. Meignanamoorthy, and V. Mohanavel, “Characterization and Properties of Silicon Carbide Reinforced Ni-10Co-5Cr (Superalloy) Matrix Composite Produced Via Powder Metallurgy Route,” Silicon, vol. 13, no. 4, pp. 973–984, 2021, doi: 10.1007/s12633-020-00455-9.
  • P. Raju, K. Raja, K. Lingadurai, T. Maridurai, and S. C. Prasanna, “Mechanical, wear, and drop load impact behavior of glass/Caryota urens hybridized fiber-reinforced nanoclay/SiC toughened epoxy multihybrid composite,” Polym. Compos., vol. 42, no. 3, pp. 1486–1496, Mar. 2021, doi: https://doi.org/10.1002/pc.25918.

Characterization of Thermo-Physical Properties of Nanoparticle Reinforced the Polyester Nanocomposite

Year 2021, Volume: 10 Issue: 2, 121 - 132, 30.12.2021

Abstract

In this research, some thermal and physical properties of unsaturated polyester (UP) nanocomposite produced using nanoparticles were investigated. Fumed Silica (FS), silicon carbide (SiC) and graphene nanoplate (GNP) were used as nanoparticles. The synthesized polyester nanocomposites were reinforced with 0.2%, 0.4%, 0.6%, 0.8% and 1.0% nanoparticles by mass. GNP and SiC nanoparticle reinforcements increased the thermal conductivity coefficient of the produced polyester nanocomposite by approximately 64% and 39%, respectively, while FS reinforcement decreased it by 12.5%. SiC nanoparticle increased the Shore D hardness of the polyester nanocomposite by 5.26% in the sample with 0.1% reinforcement. This ratio was 3.85% for 0.1% supplemented FS and 1.9% for 0.4% GNP. In addition, SiC and GNP reinforcement increased the density of the polyester nanocomposite, while FS reinforcement decreased the density of the composite. The thermal stability order of the samples was determined as FS, GNP and SiC reinforced nanocomposites. It was determined that the sample with the lowest thermal stability was UP. According to the results obtained in thermal stability experiments, mass losses of reinforced nanocomposites during thermal decomposition were compared. The thermal decomposition behavior of polyester nanocomposites was modeled by the kinetic equation. Experimental and theoretical model results were compared and correlation numbers were calculated by statistical analysis using nonlinear regression.

References

  • S. Hörold, “Phosphorus flame retardants in thermoset resins,” Polym. Degrad. Stab., vol. 64, no. 3, pp. 427–431, 1999, doi: 10.1016/S0141-3910(98)00163-3.
  • T. D. Hapuarachchi and T. Peijs, “Aluminium trihydroxide in combination with ammonium polyphosphate as flame retardants for unsaturated polyester resin,” Express Polym. Lett., vol. 3, no. 11, pp. 743–751, 2009, doi: 10.3144/expresspolymlett.2009.92.
  • B. K. Kandola, L. Krishnan, and J. R. Ebdon, “Blends of unsaturated polyester and phenolic resins for application as fire-resistant matrices in fibre-reinforced composites: Effects of added flame retardants,” Polym. Degrad. Stab., vol. 106, pp. 129–137, 2014, doi: 10.1016/j.polymdegradstab.2013.12.021.
  • Y. Yu et al., “Modified montmorillonite combined with intumescent flame retardants on the flame retardancy and thermal stability properties of unsaturated polyester resins,” Polym. Adv. Technol., vol. 30, no. 4, pp. 998–1009, 2019, doi: 10.1002/pat.4533.
  • J. Reuter, L. Greiner, F. Schönberger, and M. Döring, “Synergistic flame retardant interplay of phosphorus containing flame retardants with aluminum trihydrate depending on the specific surface area in unsaturated polyester resin,” J. Appl. Polym. Sci., vol. 136, no. 13, pp. 1–8, 2019, doi: 10.1002/app.47270.
  • S. Nazaré, B. K. Kandola, and A. R. Horrocks, “Flame-retardant unsaturated polyester resin incorporating nanoclays,” Polym. Adv. Technol., vol. 17, no. 4, pp. 294–303, 2006, doi: 10.1002/pat.687.
  • E. Kużdżał, B. Cichy, E. Kicko-Walczak, and G. Rymarz, “Rheological and fire properties of a composite of unsaturated polyester resin and halogen-free flame retardants,” J. Appl. Polym. Sci., vol. 134, no. 2, pp. 1–7, 2017, doi: 10.1002/app.44371.
  • J. Sag, D. Goedderz, P. Kukla, L. Greiner, F. Schönberger, and M. Döring, “Phosphorus-containing flame retardants from biobased chemicals and their application in polyesters and epoxy resins,” Molecules, vol. 24, no. 20, 2019, doi: 10.3390/molecules24203746.
  • J. Reuter, L. Greiner, P. Kukla, and M. Döring, “Efficient flame retardant interplay of unsaturated polyester resin formulations based on ammonium polyphosphate,” Polym. Degrad. Stab., vol. 178, 2020, doi: 10.1016/j.polymdegradstab.2020.109134.
  • R. A. Ilyas et al., “Polymer composites filled with metal derivatives: A review of flame retardants,” Polymers (Basel)., vol. 13, no. 11, 2021, doi: 10.3390/polym13111701.
  • K. Wazarkar, M. Kathalewar, and A. Sabnis, “Flammability behavior of unsaturated polyesters modified with novel phosphorous containing flame retardants,” Polym. Compos., vol. 38, no. 7, pp. 1483–1491, 2017, doi: 10.1002/pc.23716.
  • M. Jiang, Y. Yu, and Z. Chen, “Environmentally Friendly Flame Retardant Systems for Unsaturated Polyester Resin,” IOP Conf. Ser. Earth Environ. Sci., vol. 170, no. 3, 2018, doi: 10.1088/1755-1315/170/3/032116
  • E. Kicko-Walczak and G. Rymarz, “Flame-Retardant Unsaturated Polyester Resins: An Overview of Past and Recent Developments,” Polyest. - Prod. Charact. Innov. Appl., 2018, doi: 10.5772/intechopen.72536.
  • E. S. Al-hassani, “Effect of Nano Carbon Tube on the Mechanical and Physical Properties of Composites Based on Resin Route,” Eng. Technol. J., vol. 36, no. 4, 2018, doi: 10.30684/etj.36.4a.7.
  • N. S. Particles and G. Fibers, “Some Mechanical Properties of Polymer Matrix Composites Reinforced by Nano Silica Particles and Glass Fibers,” Eng. Technol. J., vol. 36, no. 12A, 2018, doi: 10.30684/etj.36.12a.10.
  • A. Kurt, H. Andan, and M. Koca, “Synthesis and Characterization of a New Bithiazole-Containing Conjugated Polymer and its Thermal Decomposition Kinetics,” Maced. J. Chem. Chem. Eng., vol. 39, no. 2, pp. 227–237, 2020, doi: 10.20450/mjcce.2020.2025.
  • Y. S. Yang and L. Suspene, “Curing of unsaturated polyester resins: Viscosity studies and simulations in pre‐gel state,” Polym. Eng. Sci., vol. 31, no. 5, pp. 321–332, 1991, doi: 10.1002/pen.760310505.
  • M. Malik, V. Choudhary, and I. K. Varma, “Current status of unsaturated polyester resins,” J. Macromol. Sci. - Polym. Rev., vol. 40, no. 2–3, pp. 139–165, 2000, doi: 10.1081/MC-100100582.
  • L. Xu and L. J. Lee, “Kinetic analysis and mechanical properties of nanoclay reinforced unsaturated polyester (UP) resins cured at low temperatures,” Polym. Eng. Sci., vol. 45, no. 4, pp. 496–509, 2005, doi: 10.1002/pen.20309.
  • M. Poorabdollah, M. H. Beheshty, and M. Vafayan, “Kinetic modeling of nanoclay-reinforced unsaturated polyester resin,” Polym. Compos., vol. 32, no. 8, pp. 1265–1273, Aug. 2011, doi: https://doi.org/10.1002/pc.21146.
  • Y. J. Huang and J. S. Leu, “Curing of unsaturated polyester resins. Effects of temperature and initiator: 1. Low temperature reactions,” Polymer (Guildf)., vol. 34, no. 2, pp. 295–304, 1993, doi: 10.1016/0032-3861(93)90080-T.
  • M. G. Lu, M. J. Shim, and S. W. Kim, “Curing behavior of an unsaturated polyester system analyzed by Avrami equation,” Thermochim. Acta, vol. 323, no. 1–2, pp. 37–42, 1998, doi: 10.1016/s0040-6031(98)00506-1.
  • D. J. Suh, Y. T. Lim, and O. O. Park, “The property and formation mechanism of unsaturated polyester-layered silicate nanocomposite depending on the fabrication methods,” Polymer (Guildf)., vol. 41, no. 24, pp. 8557–8563, 2000, doi: 10.1016/S0032-3861(00)00216-0.
  • J. M. Kenny, A. Maffezzoli, and L. Nicolais, “A model for the thermal and chemorheological behavior of thermoset processing: (II) Unsaturated polyester based composites,” Compos. Sci. Technol., vol. 38, no. 4, pp. 339–358, 1990, doi: 10.1016/0266-3538(90)90020-6.
  • M. Lu, M. Shim, and S. Kim, “Reaction mechanism of an unsaturated polyester system containing thickeners,” Eur. Polym. J., vol. 37, no. 5, pp. 1075–1078, 2001, doi: 10.1016/S0014-3057(00)00198-1.
  • W. Li and L. J. Lee, “Low temperature cure of unsaturated polyester resins with thermoplastic additives: II. Structure formation and shrinkage control mechanism,” Polymer (Guildf)., vol. 41, no. 2, pp. 697–710, 2000, doi: 10.1016/S0032-3861(99)00178-0.
  • X. Ramis and J. M. Salla, “Effect of the inhibitor on the curing of an unsaturated polyester resin,” Polymer (Guildf)., vol. 36, no. 18, pp. 3511–3521, 1995, doi: 10.1016/0032-3861(95)92023-8.
  • X. Ramis and J. M. Salla, “Effect of the initiator content and temperature on the curing of an unsaturated polyester resin,” J. Polym. Sci. Part B Polym. Phys., vol. 37, no. 8, pp. 751–768, 1999, doi: 10.1002/(SICI)1099-0488(19990415)37:8<751::AID-POLB2>3.0.CO;2-V.
  • Y. J. Huang, T. J. Lu, and W. Hwu, “Curing of unsaturated polyester resins—effects of pressure,” Polym. Eng. Sci., vol. 33, no. 1, pp. 1–17, 1993, doi: 10.1002/pen.760330102.
  • M. Kinkelaar, B. Wang, and L. J. Lee, “Shrinkage behaviour of low-profile unsaturated polyester resins,” Polymer (Guildf)., vol. 35, no. 14, pp. 3011–3022, 1994, doi: 10.1016/0032-3861(94)90414-6.
  • K. Starost et al., “The effect of nanosilica (SiO2) and nanoalumina (Al2O3) reinforced polyester nanocomposites on aerosol nanoparticle emissions into the environment during automated drilling,” Aerosol Sci. Technol., vol. 51, no. 9, pp. 1035–1046, Sep. 2017, doi: 10.1080/02786826.2017.1330535.
  • S. Rajpoot, R. Malik, and Y. W. Kim, “Effects of polysiloxane on thermal conductivity and compressive strength of porous silica ceramics,” Ceram. Int., vol. 45, no. 17, Part A, pp. 21270–21277, 2019, doi: https://doi.org/10.1016/j.ceramint.2019.07.109.
  • E. Aydoğmuş and H. Arslanoğlu, “Kinetics of thermal decomposition of the polyester nanocomposites,” Pet. Sci. Technol., pp. 1–17, Jun. 2021, doi: 10.1080/10916466.2021.1937218.
  • S. Sivananthan, K. Ravi, and C. Samson Jerold Samuel, “Effect of SiC particles reinforcement on mechanical properties of aluminium 6061 alloy processed using stir casting route,” Mater. Today Proc., vol. 21, pp. 968–970, 2020, doi: https://doi.org/10.1016/j.matpr.2019.09.068.
  • G. Veerappan, M. Ravichandran, M. Meignanamoorthy, and V. Mohanavel, “Characterization and Properties of Silicon Carbide Reinforced Ni-10Co-5Cr (Superalloy) Matrix Composite Produced Via Powder Metallurgy Route,” Silicon, vol. 13, no. 4, pp. 973–984, 2021, doi: 10.1007/s12633-020-00455-9.
  • P. Raju, K. Raja, K. Lingadurai, T. Maridurai, and S. C. Prasanna, “Mechanical, wear, and drop load impact behavior of glass/Caryota urens hybridized fiber-reinforced nanoclay/SiC toughened epoxy multihybrid composite,” Polym. Compos., vol. 42, no. 3, pp. 1486–1496, Mar. 2021, doi: https://doi.org/10.1002/pc.25918.
There are 36 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Cenk Yanen 0000-0002-5092-8734

Ercan Aydoğmuş 0000-0002-1643-2487

Publication Date December 30, 2021
Submission Date June 27, 2021
Published in Issue Year 2021 Volume: 10 Issue: 2

Cite

IEEE C. Yanen and E. Aydoğmuş, “Characterization of Thermo-Physical Properties of Nanoparticle Reinforced the Polyester Nanocomposite”, DUFED, vol. 10, no. 2, pp. 121–132, 2021.


DUFED is indexed/abstracted/enlisted in

Google Scholar | CABI - CAB Abstracts and Global Health | CAS Chemical Abstracts Service | ROAD Directory of Open Access Scholarly Resources | Index Copernicus | CiteFactor Academic Scientific Journals | BASE Bielefeld Academic Search Engine | Open AIRE | IJIFACTOR | ASOS Index | Paperity Open Science Aggregated | I2OR International Institute of Organized Research | SJIF Scientific Journal Impact Factor | Advanced Science Index | DRJI Directory of Research Journals Indexing | SOBİAD | AcarIndex | SIS Scientific Indexing Services | Crossref | Harman Türkiye Akademik Arşivi | AccessOn | Dimensions | Wizdom | OUCI The Open Ukrainian Citation Index | WorldCat | Scilit | ASCI Asian Science Citation Index

  cc.logo.large.png       Creative Commons License

28576
DUFED is a diamond open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. In addition, authors are not charged article processing fees or publication fees - no fees whatsoever. Importantly, authors retain the copyright of their work and allow it to be shared and reused, provided that it is correctly cited.

1024px-DOI_logo.svg.png https://doi.org/10.55007/dufed.xxxxxxx