Research Article
BibTex RIS Cite

Modelling of Electric Vehicle Batteries Using a Second-order Transfer Function

Year 2024, Volume: 13 Issue: 2, 177 - 196, 30.12.2024
https://doi.org/10.55007/dufed.1438887

Abstract

In recent years, there has been an increase in the use of renewable energy sources due to global warming and the rapid depletion of fossil fuel resources. In this context, electric and hybrid electric vehicles attract have great attention from researchers, scientists and governments. One of the key components of electric vehicles is the power battery. The biggest challenge faced by electric vehicles is finding an efficient energy storage device that can provide efficient driving, fast charging capabilities, and long range. According to current technology, lithium polymer batteries, nickel metal hydride batteries and lithium-ion batteries are common among the energy sources of electric vehicles. Lithium-ion batteries have many advantages such as high energy density, long life, light weight, low discharge rate, affordable cost and no memory effect. In addition, lithium-ion batteries are made of environmentally friendly materials that do not produce harmful emissions and offer high safety. However, designing these batteries and predicting their behavior is still an engineering problem that has not been fully solved. In this study, the second-order transfer function approach, which is a simple and effective approach, is used to predict the behavior of lithium-ion batteries used in electric vehicles. The results are compared with the thermal equivalent circuit modeling, where the proposed approach gives positive results. One of the main advantages of the proposed method is the reduction in the need for computational memory. This allows the simplified model to be used to improve the efficiency, performance, and safety of energy storage systems in electric vehicles under various operating conditions.

References

  • G. Xia, L. Cao, and G. Bi, “A review on battery thermal management in electric vehicle application,” J. Power Sources, vol.367, pp. 90–105, 2017, doi: 10.1016/j.jpowsour.2017.09.046.
  • J. Jaguemont and J. Van Mierlo, “A comprehensive review of future thermal management systems for battery-electrified vehicles,” J. Energy Storage, vol. 31, no. January, pp. 101551, 2020, doi: 10.1016/j.est.2020.101551.
  • M. Malik, I. Dincer, and M. A. Rosen, “Review on use of phase change materials in battery thermal management for electric and hybrid electric vehicles,” Int. J. Energy Res., vol. 40, no. 8, pp. 1011–1031, 2016, doi: https://doi.org/10.1002/er.3496.
  • M. Kaba, O. Kalkan, and A. Celen, “Elektrikli araçlarda kullanılan bataryalar ve termal yönetim sistemlerinin incelenmesi,” Konya J. Eng. Sci., vol. 9, no. 4, pp. 1119–1136, 2021, doi: 10.36306/konjes.945819.
  • K. Vidyanandan, “Batteries for Electric Vehicles.,” Energy Scan A House e-Journal Corp. Planning, vol. 2, no. November, pp. 362–364, 2019, doi: 10.1017/cbo9781316090978.
  • D. Chen, J. Jiang, G. H. Kim, C. Yang, and A. Pesaran, “Comparison of different cooling methods for lithium ion battery cells,” Appl. Therm. Eng., vol. 94, pp. 846–854, 2016, doi: 10.1016/j.applthermaleng.2015.10.015.
  • J. Lin, X. Liu, S. Li, C. Zhang, and S. Yang, “A review on recent progress, challenges and perspective of battery thermal management system,” Int. J. Heat Mass Transf., vol. 167, pp. 120834, 2021, doi: 10.1016/j.ijheatmasstransfer.2020.120834.
  • P. R. Tete, M. M. Gupta, and S. S. Joshi, “Developments in battery thermal management systems for electric vehicles: A technical review,” J. Energy Storage, vol. 35, no. December 2020, p. 102255, 2021, doi: 10.1016/j.est.2021.102255.
  • G. Şefkatand M. A. Özel, “Elektrikliaraçlarda kullanilanpi̇hücresi̇ni̇nelektri̇ksel ve termalmodeli̇,” Uludağ Univ. J. Fac. Eng., vol. 25, no. 1, pp. 51–64, 2020, doi: 10.17482/uumfd.541391.
  • M. A. Jusoh and M. Z. Daud, “Accurate battery model parameter identification using heuristic optimization,” Int. J. Power Electron. Drive Syst., vol. 11, no. 1, pp. 333–341, 2020, doi: 10.11591/ijpeds.v11.i1.pp333-341.
  • H. Miniguano, A. Barrado, A. Lazaro, P. Zumel, and C. Fernandez, “General parameter identification procedure and comparative study of Li-Ion battery models,” IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 235–245, 2020, doi: 10.1109/TVT.2019.2952970.
  • J. Jaguemont, A. Nikolian, N. Omar, S. Goutam, J. Van Mierlo, and P. Van Den Bossche, “Development of a two-dimensional-thermal model of three battery chemistries,” IEEE Trans. Energy Convers., vol. 32, no. 4, pp. 1447–1455, 2017, doi: 10.1109/TEC.2017.2697944.
  • M. Dubarry, N. Vuillaume, and B. Y. Liaw, “From single cell model to battery pack simulation for Li-ion batteries,” J. Power Sources, vol. 186, no. 2, pp. 500–507, 2009, doi: 10.1016/j.jpowsour.2008.10.051.
  • R. Kantharaj and A. M. Marconnet, “Heat Generation and Thermal Transport in Lithium-Ion Batteries: A Scale-Bridging Perspective,” Nanoscale Microscale Thermophys. Eng., vol. 23, no. 2, pp. 128–156, 2019, doi: 10.1080/15567265.2019.1572679.
  • K. Li, B. H. Soong, and K. J. Tseng, “A high-fidelity hybrid lithium-ion battery model for SOE and runtime prediction,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, Tampa, Florida, pp. 2374–2381, March 26-30, 2017, doi: 10.1109/APEC.2017.7931032.
  • R. Zhang et al., “A study on the open circuit voltage and state of charge characterization of high capacity lithium-ion battery under different temperature,” Energies, vol. 11, no. 9, 2018, doi: 10.3390/en11092408.
  • W. Wu, S. Wang, W. Wu, K. Chen, S. Hong, and Y. Lai, “A critical review of battery thermal performance and liquid based battery thermal management,” Energy Convers. Manag., vol. 182, no. December 2018, pp. 262–281, 2019, doi: 10.1016/j.enconman.2018.12.051
  • C. Wang et al., “Cooperative co-evolutionary differential evolution algorithm applied for parameters identification of lithium-ion batteries,” Expert Syst. Appl., vol. 200,pp. 117192, 2022, doi: 10.1016/j.eswa.2022.117192.
  • C. Zhang, K. Li, S. McLoone, and Z. Yang, “Battery modelling methods for electric vehicles - A review,” 2014 Eur. Control Conf. ECC 2014, Strasbourg, France, pp. 2673–2678, June 25-27, 2014, doi: 10.1109/ECC.2014.6862541.
  • T. Huria, M. Ceraolo, J. Gazzarri, and R. Jackey, “High fidelity electrical model with thermal dependence for characterization and simulation of high power lithium battery cells,” 2012 IEEE Int. Electr. Veh. Conf. IEVC 2012,Greenville, SC, United States,March 4-8, 2012, doi: 10.1109/IEVC.2012.6183271.
  • Q. Sun and C. Tang,Battery Cell Electro-Thermal Modeling and Cooling System Design.(2018).Accessed: May 16, 2024 [Online]. Available: https://publications.lib.chalmers.se/records/fulltext/256167/256167.pdf
  • B. Kumaran. Kokam Cell 31ah (SLPB78216216H), Accessed: May20, 2024 [Online]. Available:http://www.kokam.com/new/kokam_en/sub01/sub01_01.html

İkinci Dereceden Bir Transfer Fonksiyonu Kullanılarak Elektrikli Araç Bataryalarının Modellenmesi

Year 2024, Volume: 13 Issue: 2, 177 - 196, 30.12.2024
https://doi.org/10.55007/dufed.1438887

Abstract

Son yıllarda, küresel ısınma ve fosil yakıt kaynaklarının hızla azalması nedeniyle yenilenebilir enerji kaynaklarının kullanımında artış gözlenmektedir. Bu bağlamda, araştırmacılar, bilim insanları ve hükümetler tarafından elektrikli ve hibrit araçlar büyük ilgi görmektedir. Elektrikli araçların temel bileşenlerinden biri güç bataryasıdır. Elektrikli araçların karşılaştığı en büyük zorluk, verimli sürüş, hızlı şarj olabilme ve uzun menzil sunabilen uygun bir enerji depolama cihazı bulmaktır. Mevcut teknolojiye göre, elektrikli araçların enerji kaynakları arasında lityum polimer piller, nikel metal hibrit piller ve lityum iyon piller yaygındır. Lityum iyon piller, yüksek enerji yoğunluğu, uzun ömür, hafiflik, düşük deşarj oranı, uygun maliyet ve hafıza etkisi olmaması gibi birçok avantaja sahiptir. Ayrıca, lityum iyon piller, zararlı emisyon üretmeyen çevre dostu malzemelerden yapılmıştır ve yüksek güvenlik sunar. Ancak, bu pilleri tasarlamak ve davranışlarını tahmin etmek hala tam olarak çözülememiş bir mühendislik sorunudur. Bu çalışmada, elektrikli araçlarda kullanılan lityum iyon pillerin davranışını tahmin etmek için basit ve etkili bir yaklaşım olan ikinci dereceden transfer fonksiyonu yaklaşımı kullanılmıştır. Sonuçlar, önerilen yaklaşımın olumlu sonuçlar verdiği termal eşdeğer devre modellemesiyle karşılaştırılmıştır. Önerilen yöntemin ana avantajlarından biri, hesaplama belleğine olan ihtiyacı azaltmasıdır. Bu durum, basitleştirilmiş modelin elektrikli araçların enerji depolama sistemlerinin verimliliği, performansı ve güvenliğini çeşitli işletme koşullarında iyileştirmek için kullanılmasına olanak tanır.

References

  • G. Xia, L. Cao, and G. Bi, “A review on battery thermal management in electric vehicle application,” J. Power Sources, vol.367, pp. 90–105, 2017, doi: 10.1016/j.jpowsour.2017.09.046.
  • J. Jaguemont and J. Van Mierlo, “A comprehensive review of future thermal management systems for battery-electrified vehicles,” J. Energy Storage, vol. 31, no. January, pp. 101551, 2020, doi: 10.1016/j.est.2020.101551.
  • M. Malik, I. Dincer, and M. A. Rosen, “Review on use of phase change materials in battery thermal management for electric and hybrid electric vehicles,” Int. J. Energy Res., vol. 40, no. 8, pp. 1011–1031, 2016, doi: https://doi.org/10.1002/er.3496.
  • M. Kaba, O. Kalkan, and A. Celen, “Elektrikli araçlarda kullanılan bataryalar ve termal yönetim sistemlerinin incelenmesi,” Konya J. Eng. Sci., vol. 9, no. 4, pp. 1119–1136, 2021, doi: 10.36306/konjes.945819.
  • K. Vidyanandan, “Batteries for Electric Vehicles.,” Energy Scan A House e-Journal Corp. Planning, vol. 2, no. November, pp. 362–364, 2019, doi: 10.1017/cbo9781316090978.
  • D. Chen, J. Jiang, G. H. Kim, C. Yang, and A. Pesaran, “Comparison of different cooling methods for lithium ion battery cells,” Appl. Therm. Eng., vol. 94, pp. 846–854, 2016, doi: 10.1016/j.applthermaleng.2015.10.015.
  • J. Lin, X. Liu, S. Li, C. Zhang, and S. Yang, “A review on recent progress, challenges and perspective of battery thermal management system,” Int. J. Heat Mass Transf., vol. 167, pp. 120834, 2021, doi: 10.1016/j.ijheatmasstransfer.2020.120834.
  • P. R. Tete, M. M. Gupta, and S. S. Joshi, “Developments in battery thermal management systems for electric vehicles: A technical review,” J. Energy Storage, vol. 35, no. December 2020, p. 102255, 2021, doi: 10.1016/j.est.2021.102255.
  • G. Şefkatand M. A. Özel, “Elektrikliaraçlarda kullanilanpi̇hücresi̇ni̇nelektri̇ksel ve termalmodeli̇,” Uludağ Univ. J. Fac. Eng., vol. 25, no. 1, pp. 51–64, 2020, doi: 10.17482/uumfd.541391.
  • M. A. Jusoh and M. Z. Daud, “Accurate battery model parameter identification using heuristic optimization,” Int. J. Power Electron. Drive Syst., vol. 11, no. 1, pp. 333–341, 2020, doi: 10.11591/ijpeds.v11.i1.pp333-341.
  • H. Miniguano, A. Barrado, A. Lazaro, P. Zumel, and C. Fernandez, “General parameter identification procedure and comparative study of Li-Ion battery models,” IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 235–245, 2020, doi: 10.1109/TVT.2019.2952970.
  • J. Jaguemont, A. Nikolian, N. Omar, S. Goutam, J. Van Mierlo, and P. Van Den Bossche, “Development of a two-dimensional-thermal model of three battery chemistries,” IEEE Trans. Energy Convers., vol. 32, no. 4, pp. 1447–1455, 2017, doi: 10.1109/TEC.2017.2697944.
  • M. Dubarry, N. Vuillaume, and B. Y. Liaw, “From single cell model to battery pack simulation for Li-ion batteries,” J. Power Sources, vol. 186, no. 2, pp. 500–507, 2009, doi: 10.1016/j.jpowsour.2008.10.051.
  • R. Kantharaj and A. M. Marconnet, “Heat Generation and Thermal Transport in Lithium-Ion Batteries: A Scale-Bridging Perspective,” Nanoscale Microscale Thermophys. Eng., vol. 23, no. 2, pp. 128–156, 2019, doi: 10.1080/15567265.2019.1572679.
  • K. Li, B. H. Soong, and K. J. Tseng, “A high-fidelity hybrid lithium-ion battery model for SOE and runtime prediction,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, Tampa, Florida, pp. 2374–2381, March 26-30, 2017, doi: 10.1109/APEC.2017.7931032.
  • R. Zhang et al., “A study on the open circuit voltage and state of charge characterization of high capacity lithium-ion battery under different temperature,” Energies, vol. 11, no. 9, 2018, doi: 10.3390/en11092408.
  • W. Wu, S. Wang, W. Wu, K. Chen, S. Hong, and Y. Lai, “A critical review of battery thermal performance and liquid based battery thermal management,” Energy Convers. Manag., vol. 182, no. December 2018, pp. 262–281, 2019, doi: 10.1016/j.enconman.2018.12.051
  • C. Wang et al., “Cooperative co-evolutionary differential evolution algorithm applied for parameters identification of lithium-ion batteries,” Expert Syst. Appl., vol. 200,pp. 117192, 2022, doi: 10.1016/j.eswa.2022.117192.
  • C. Zhang, K. Li, S. McLoone, and Z. Yang, “Battery modelling methods for electric vehicles - A review,” 2014 Eur. Control Conf. ECC 2014, Strasbourg, France, pp. 2673–2678, June 25-27, 2014, doi: 10.1109/ECC.2014.6862541.
  • T. Huria, M. Ceraolo, J. Gazzarri, and R. Jackey, “High fidelity electrical model with thermal dependence for characterization and simulation of high power lithium battery cells,” 2012 IEEE Int. Electr. Veh. Conf. IEVC 2012,Greenville, SC, United States,March 4-8, 2012, doi: 10.1109/IEVC.2012.6183271.
  • Q. Sun and C. Tang,Battery Cell Electro-Thermal Modeling and Cooling System Design.(2018).Accessed: May 16, 2024 [Online]. Available: https://publications.lib.chalmers.se/records/fulltext/256167/256167.pdf
  • B. Kumaran. Kokam Cell 31ah (SLPB78216216H), Accessed: May20, 2024 [Online]. Available:http://www.kokam.com/new/kokam_en/sub01/sub01_01.html
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering (Other)
Journal Section Research Articles
Authors

Mohammed Abdulmalek Abdulrahman Mohammed 0009-0002-1069-5304

Hasan Bayındır 0000-0002-2850-1953

Early Pub Date December 15, 2024
Publication Date December 30, 2024
Submission Date February 17, 2024
Acceptance Date July 23, 2024
Published in Issue Year 2024 Volume: 13 Issue: 2

Cite

IEEE M. A. A. Mohammed and H. Bayındır, “İkinci Dereceden Bir Transfer Fonksiyonu Kullanılarak Elektrikli Araç Bataryalarının Modellenmesi”, DUFED, vol. 13, no. 2, pp. 177–196, 2024, doi: 10.55007/dufed.1438887.


DUFED is indexed/abstracted/enlisted in

Google Scholar | CABI - CAB Abstracts and Global Health | CAS Chemical Abstracts Service | ROAD Directory of Open Access Scholarly Resources | Index Copernicus | CiteFactor Academic Scientific Journals | BASE Bielefeld Academic Search Engine | Open AIRE | IJIFACTOR | ASOS Index | Paperity Open Science Aggregated | I2OR International Institute of Organized Research | SJIF Scientific Journal Impact Factor | Advanced Science Index | DRJI Directory of Research Journals Indexing | SOBİAD | AcarIndex | SIS Scientific Indexing Services | Crossref | Harman Türkiye Akademik Arşivi | AccessOn | Dimensions | Wizdom | OUCI The Open Ukrainian Citation Index | WorldCat | Scilit | ASCI Asian Science Citation Index

  cc.logo.large.png       Creative Commons License

28576
DUFED is a diamond open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. In addition, authors are not charged article processing fees or publication fees - no fees whatsoever. Importantly, authors retain the copyright of their work and allow it to be shared and reused, provided that it is correctly cited.

1024px-DOI_logo.svg.png https://doi.org/10.55007/dufed.xxxxxxx