Research Article
BibTex RIS Cite

Rekabetçi Evrimsel Algoritmalar ile Yuvarlak Papyon Anten Tasarımı

Year 2021, , 551 - 564, 29.09.2021
https://doi.org/10.24012/dumf.1001870

Abstract

Bu çalışmada kablosuz yerel alan ağları (WLAN) uygulamaları için 5 GHz bandındaki yuvarlak papyon antenin tasarım parametrelerinin seçimi rekabetçi evrimsel algoritmalar ile çok boyutlu ve çok amaçlı bir tasarım optimizasyon problemi olarak sunulmuştur. Bu zorlu tasarım optimizasyonun üstesinden gelebilmek için yeni, hızlı ve güçlü optimizasyon algoritmaları, ateşböceği, diferansiyel evrim ve guguk kuşu arama kullanılarak anten optimizasyon işlemi rekabetçi bir biçimde karşılaştırılmıştır. Önerilen anten tasarımı ateşböceği algoritması ile tasarlanan 5 GHz rezonans frekans noktasında geri dönüş kaybı (S11) değeri -56,31 dB olarak bulunmuştur. Sonuç olarak, önerilen tasarım optimizasyon süreçleri, tüm anten tasarım problemleri için verimli, hızlı ve güvenilir bir çözümdür.

References

  • [1] Su, C. M., Chen, W. S., Wong, K. L., (2003). Compact dual-band metal-plate antenna for 2.4/5.2-GHz WLAN operation, Microw. Opt. Technol. Lett., 38, 113–115.
  • [2] Gao, X., Zhong, H., Zhang, Z., Feng, Z., Iskander, M. F., (2010). Low-profile planar tripolarization antenna for WLAN communications, IEEE Antennas Wireless Propag. Lett., 9, 83–86.
  • [3] Wong, K. L., Chou, L. C., Su, C. M., (2005). Dual-band flat-plate antenna with a shorted parasitic element for laptop applications, IEEE Trans. Antennas Propag., 53, 1, 539–544.
  • [4] Chang, T. N., Jiang, J.-H., (2009), Meandered T-shaped monopole antenna, IEEE Trans. Antennas Propag., 57, 12, 3976–3978.
  • [5] Nakano, H., Sato, Y., Mimaki, H., Yamauchi, J., (2005). “An inverted FL antenna for dual-frequency operation,” IEEE Trans. Antennas Propag., 53, 8, 2417–2421.
  • [6] Li, R., Pan, B., Laskar, J., Tentzeris, M. M., (2008). A novel low-profile broadband dual-frequency planar antenna for wireless handsets, IEEE Trans. Antennas Propag., 56, 4, 1155–1162.
  • [7] Jan, J. Y., Tseng, L. C., (2004). Small planar monopole antenna with a shorted parasitic inverted-L wire for wireless communications in the 2.4-, 5.2-, and 5.8-GHz bands, IEEE Trans. Antennas Propag., 52, 7, 1903–1905.
  • [8] Liu, W. C., Wu, C. M., Dai, Y., (2011). Design of triple-frequency microstrip- fed monopole antenna using defected ground structure, IEEE Trans. Antennas Propag., 59, 7, 2457–2463.
  • [9] Minasian, A. A., Bird, T. S., Atai, J., (2011). Particle swarm antennas for wireless communication systems,” in Proc. EuCAP, Rome, Italy, 897–899.
  • [10] Minasian, A. A., Bird, T. S., (2012). Complementary particle swarm antennas for next generation wireless communication systems,” in Proc. ISWCS, Paris, France, 895–898.
  • [11] Balanis, C. A., (2005). Antenna Theory: Analysis and Design, 3rd ed. Hoboken, NJ, USA: Wiley.
  • [12] Fisher, L., (2009). The Perfect Swarm. New York, NY, USA: Basic Books.
  • [13] Robinson, J., Sinton, S., Rahmat-Samii, Y., (2002). Particle swarm, genetic algorithm, and their hybrids: optimization of a profiled corrugated horn antenna, in Proc. IEEE Int. Symp. Antennas Propagation, San Antonio, 1, 314–317.
  • [14] Boeringer, D., Werner, D., (2004). Particle swarm optimization versus genetic algorithms for phased array synthesis, IEEE Trans. Antennas Propag., 52, 3, 771–779.
  • [15] Yang, F., Zhang, X-X., Ye, X., Rahmat-Samii, Y., (2001). Wide-band E-shaped patch antennas for wireless communications, IEEE Trans. Antennas Propag., 49, 7, 1094–1100.
  • [16] Kim, T-W., Choi, K., Hwang, H-Y., (2015). Small bowtie monopole UWB antenna, Loughborough Antennas & Propagation Conference (LAPC).
  • [17] Saghlatoon, H., Honari, M. M., Mirzavand, R., Mousavi, P., Kumar, A., La, T. G., Chung, H-J., (2017). A novel investigation on printed stretchable WLAN antennas, IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.
  • [18] Hamid, A-K., Obaid, W., (2017). Penta-frequency CPW bow-tie aperture antenna for mobile communications, 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO).
  • [19] Mulchandani, J. D., Gupta, D., Sharma, S. K., Mishra, N., Chaudhary, R. K., (2016). Narrow-band electrically small metamaterial-inspired antenna with bowtie-shaped stub for WLAN, 11th International Conference on Industrial and Information Systems (ICIIS).
  • [20] Mansoul, A., (2017). Reconfigurable multiband bowtie antenna for WiFi, WiMax, and WLAN applications, IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.
  • [21] Zhang, Q-L., Si, L-M., Wu, Y-M., Liu, Y., Lv, X., (2014). Design of a coplanar bowtie antenna for WLAN and WiMAX application, Proceedings of 2014 3rd Asia-Pacific Conference on Antennas and Propagation.
  • [22] Belen, M. A., Alıcı, M., Çor, A., Güneş, F., (2014). Performance characterization of a microwave transistor using firefly Algorithm’ Symposium of electrical- electronics and computer engineering ELECO, 27, 29, 491-493.
  • [23] Yang, X.S., (2009). Firefly algorithms for multimodal optimization’, Stochastic algorithms: Foundations and applications, SAGA, Lecture notes in computer sciences, 5792, 169–178.
  • [24] Yang, X. S., Deb, S., (2010). Engineering optimization by cuckoo search’, Int. J. Mathematical modelling and numerical optimization, 1, 4, 330–343.
  • [25] Wang, F., He, X. S., Wang, Y., Yang, S., (2012). Markov model and convergence analysis based on cuckoo search algorithm’, Jisuanji Gongcheng/ Computer Engineering, 38, 11, 180–185.
  • [26] Yang, X. S, Deb, S., (2009). Cuckoo Search via Levy Flights’, Proc. of world congress on nature & biologically inspired computing, 210–214.
  • [27] Güneş, F., Karataev, T., Demirel, S., (2016). Composite right/left-handed transmission lines in use for ultrawideband matching of front-end amplifiers with modified cuckoo search optimization’, International Journal of Numerical Modelling: Electronic networks, devices and Fields, DOI: 10.1002/jnm.21441.
  • [28] Storn, R., Price, K., (1997). Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces’, Journal of global optimization, 11, 4, 341–359.
  • [29] Das, S., Abraham, A. Chacraborty, U.K., Konar, A., (2009). Differential evolution using a neighborhood-based mutation operator’, IEEE Transactions on evolutionary computation, 13, 3, 526–553.
  • [30] Das, S., Suganthan, P.N., (2011). Differential Evolution: A Survey of the State-of-the-Art’, IEEE Transactions on Evolutionary Computation, 15, 1, 4-31.
  • [31] Yang, X-S., (2013). Multiobjective Firefly Algorithm for Continuous Optimization, Engineering with Computers, Engineering with Computers, 29, 2, 175-184.
  • [32] Johnson, J.M., Rahmat-Samii, Y., (1999). Genetic algorithms and method of moments (GA/MOM) for the design of integrated antennas, IEEE Transactions on Antennas and Propagation, 47, 10, 1606-1614.
Year 2021, , 551 - 564, 29.09.2021
https://doi.org/10.24012/dumf.1001870

Abstract

References

  • [1] Su, C. M., Chen, W. S., Wong, K. L., (2003). Compact dual-band metal-plate antenna for 2.4/5.2-GHz WLAN operation, Microw. Opt. Technol. Lett., 38, 113–115.
  • [2] Gao, X., Zhong, H., Zhang, Z., Feng, Z., Iskander, M. F., (2010). Low-profile planar tripolarization antenna for WLAN communications, IEEE Antennas Wireless Propag. Lett., 9, 83–86.
  • [3] Wong, K. L., Chou, L. C., Su, C. M., (2005). Dual-band flat-plate antenna with a shorted parasitic element for laptop applications, IEEE Trans. Antennas Propag., 53, 1, 539–544.
  • [4] Chang, T. N., Jiang, J.-H., (2009), Meandered T-shaped monopole antenna, IEEE Trans. Antennas Propag., 57, 12, 3976–3978.
  • [5] Nakano, H., Sato, Y., Mimaki, H., Yamauchi, J., (2005). “An inverted FL antenna for dual-frequency operation,” IEEE Trans. Antennas Propag., 53, 8, 2417–2421.
  • [6] Li, R., Pan, B., Laskar, J., Tentzeris, M. M., (2008). A novel low-profile broadband dual-frequency planar antenna for wireless handsets, IEEE Trans. Antennas Propag., 56, 4, 1155–1162.
  • [7] Jan, J. Y., Tseng, L. C., (2004). Small planar monopole antenna with a shorted parasitic inverted-L wire for wireless communications in the 2.4-, 5.2-, and 5.8-GHz bands, IEEE Trans. Antennas Propag., 52, 7, 1903–1905.
  • [8] Liu, W. C., Wu, C. M., Dai, Y., (2011). Design of triple-frequency microstrip- fed monopole antenna using defected ground structure, IEEE Trans. Antennas Propag., 59, 7, 2457–2463.
  • [9] Minasian, A. A., Bird, T. S., Atai, J., (2011). Particle swarm antennas for wireless communication systems,” in Proc. EuCAP, Rome, Italy, 897–899.
  • [10] Minasian, A. A., Bird, T. S., (2012). Complementary particle swarm antennas for next generation wireless communication systems,” in Proc. ISWCS, Paris, France, 895–898.
  • [11] Balanis, C. A., (2005). Antenna Theory: Analysis and Design, 3rd ed. Hoboken, NJ, USA: Wiley.
  • [12] Fisher, L., (2009). The Perfect Swarm. New York, NY, USA: Basic Books.
  • [13] Robinson, J., Sinton, S., Rahmat-Samii, Y., (2002). Particle swarm, genetic algorithm, and their hybrids: optimization of a profiled corrugated horn antenna, in Proc. IEEE Int. Symp. Antennas Propagation, San Antonio, 1, 314–317.
  • [14] Boeringer, D., Werner, D., (2004). Particle swarm optimization versus genetic algorithms for phased array synthesis, IEEE Trans. Antennas Propag., 52, 3, 771–779.
  • [15] Yang, F., Zhang, X-X., Ye, X., Rahmat-Samii, Y., (2001). Wide-band E-shaped patch antennas for wireless communications, IEEE Trans. Antennas Propag., 49, 7, 1094–1100.
  • [16] Kim, T-W., Choi, K., Hwang, H-Y., (2015). Small bowtie monopole UWB antenna, Loughborough Antennas & Propagation Conference (LAPC).
  • [17] Saghlatoon, H., Honari, M. M., Mirzavand, R., Mousavi, P., Kumar, A., La, T. G., Chung, H-J., (2017). A novel investigation on printed stretchable WLAN antennas, IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.
  • [18] Hamid, A-K., Obaid, W., (2017). Penta-frequency CPW bow-tie aperture antenna for mobile communications, 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO).
  • [19] Mulchandani, J. D., Gupta, D., Sharma, S. K., Mishra, N., Chaudhary, R. K., (2016). Narrow-band electrically small metamaterial-inspired antenna with bowtie-shaped stub for WLAN, 11th International Conference on Industrial and Information Systems (ICIIS).
  • [20] Mansoul, A., (2017). Reconfigurable multiband bowtie antenna for WiFi, WiMax, and WLAN applications, IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.
  • [21] Zhang, Q-L., Si, L-M., Wu, Y-M., Liu, Y., Lv, X., (2014). Design of a coplanar bowtie antenna for WLAN and WiMAX application, Proceedings of 2014 3rd Asia-Pacific Conference on Antennas and Propagation.
  • [22] Belen, M. A., Alıcı, M., Çor, A., Güneş, F., (2014). Performance characterization of a microwave transistor using firefly Algorithm’ Symposium of electrical- electronics and computer engineering ELECO, 27, 29, 491-493.
  • [23] Yang, X.S., (2009). Firefly algorithms for multimodal optimization’, Stochastic algorithms: Foundations and applications, SAGA, Lecture notes in computer sciences, 5792, 169–178.
  • [24] Yang, X. S., Deb, S., (2010). Engineering optimization by cuckoo search’, Int. J. Mathematical modelling and numerical optimization, 1, 4, 330–343.
  • [25] Wang, F., He, X. S., Wang, Y., Yang, S., (2012). Markov model and convergence analysis based on cuckoo search algorithm’, Jisuanji Gongcheng/ Computer Engineering, 38, 11, 180–185.
  • [26] Yang, X. S, Deb, S., (2009). Cuckoo Search via Levy Flights’, Proc. of world congress on nature & biologically inspired computing, 210–214.
  • [27] Güneş, F., Karataev, T., Demirel, S., (2016). Composite right/left-handed transmission lines in use for ultrawideband matching of front-end amplifiers with modified cuckoo search optimization’, International Journal of Numerical Modelling: Electronic networks, devices and Fields, DOI: 10.1002/jnm.21441.
  • [28] Storn, R., Price, K., (1997). Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces’, Journal of global optimization, 11, 4, 341–359.
  • [29] Das, S., Abraham, A. Chacraborty, U.K., Konar, A., (2009). Differential evolution using a neighborhood-based mutation operator’, IEEE Transactions on evolutionary computation, 13, 3, 526–553.
  • [30] Das, S., Suganthan, P.N., (2011). Differential Evolution: A Survey of the State-of-the-Art’, IEEE Transactions on Evolutionary Computation, 15, 1, 4-31.
  • [31] Yang, X-S., (2013). Multiobjective Firefly Algorithm for Continuous Optimization, Engineering with Computers, Engineering with Computers, 29, 2, 175-184.
  • [32] Johnson, J.M., Rahmat-Samii, Y., (1999). Genetic algorithms and method of moments (GA/MOM) for the design of integrated antennas, IEEE Transactions on Antennas and Propagation, 47, 10, 1606-1614.
There are 32 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Ahmet Uluslu This is me 0000-0002-5580-1687

Publication Date September 29, 2021
Submission Date April 10, 2021
Published in Issue Year 2021

Cite

IEEE A. Uluslu, “Rekabetçi Evrimsel Algoritmalar ile Yuvarlak Papyon Anten Tasarımı”, DÜMF MD, vol. 12, no. 4, pp. 551–564, 2021, doi: 10.24012/dumf.1001870.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456