Research Article
BibTex RIS Cite

Betonda ince uçucu kül kullanımı ile ASR genleşmesinin azaltılması

Year 2023, , 351 - 360, 20.06.2023
https://doi.org/10.24012/dumf.1158420

Abstract

Bu çalışmada; Kahramanmaraş’ta yer alan bir termik santralden temin edilen C tipi UK, farklı sürelerde öğütülerek farklı oranlarda çimento ile ikame edilmiş ve Alkali silika reaksiyonu (ASR) üzerindeki etkisi incelenmiştir. İlk önce uçucu kül içermeyen referans numune karışımları ASTM C 1260 standardına göre hazırlanmıştır. Daha sonra UK’nin, 0, 10 ve 20 dk öğütme süreleri sonrasında inceltilen malzemenin her birini betonda çimento yerine % 10 ve % 30 ikame edilerek harç numuneleri hazırlanmıştır. Elde edilen numunelerin 3, 7, 14 ve 28 günlük kür süresi sonrasında ASR genleşme ölçümleri gerçekleştirilmiştir. Elde edilen sonuçlara göre; UK’nin eklendiği numunelerin referans numunesine göre ASR boy değişim oranları azalmıştır. Ayrıca öğütme süresinin ve ikame oranının artmasıyla birlikte ASR boy değişim değerlerinde düşüş meydana geldiği görülmüştür. Genel olarak 0, 10 ve 20 dk öğütme sonrası elde edilen farklı blaine incelik değerine sahip UK’ün % 10 ve % 30 ikame oranlarında çimento yerine kullanılarak hazırlanan harç örneklerinin 3,7 ve 14 günlük kür süreleri sonrasında ASR boy değişim değerlerinde artış gözlemlenmiştir. 28 günlük kür süresi sonrasında ise artış gözlemlenmiş ancak bu diğer kür süreleri sonrasında elde edilen değerlere kıyasla daha düşük olduğu belirlenmiştir. Böylece; UK’ün öğütmeye bağlı olarak inceliğinin ve ikame oranının artmasıyla birlikte betonun bünyesindeki boşlukları doldurması sonucunda geçirimsiz bir beton oluşmuş ve betonda oluşan ASR etkisini azaltmıştır. Ayrıca öğütülmüş uçucu küller harç örneklerinin geçirimsizlik özellik kazandırmasının yanı sıra toz bağlayıcılığındaki alkali (Na2O ve K2O) miktarını azaltması ve Ca(OH)2’yi C-S-H jellerine dönüştürmesini sağlayarak ASR oluşumunu engellemiştir.

References

  • [1] M. D. A. T. K. J. F. B. F. T. D. S. I. Garber, “Methods for Preventing ASR in New Construction: Results of Field Exposure Sites,” United States, 2013.
  • [2] M.-A. Berube and B. Fournier, “Les produits de la reaction alcalis-silice dans le beton; etude de cas de la region de Quebec,” Can. Mineral., vol. 24, no. 2, pp. 271–288, Jun. 1986.
  • [3] E. Grimal, “Caractérisation des effets du gonflement provoqué par la réaction alcali-silice sur le comportement mécanique d’une structure en béton,” Université Paul Sabatier, Toulouse, France, 2007.
  • [4] A. . Rodrigue, J. . Duchesne, B. . Fournier, M. . Champagne, and B. . Bissonnette, “Alkali-silica reaction in alkali-activated combined slag and fly ash concretes: The tempering effect of fly ash on expansion and cracking,” Constr. Build. Mater., vol. 251, p. 118968, Aug. 2020, doi: 10.1016/j.conbuildmat.2020.118968.
  • [5] İ. Demir, Ö. Sevim, and İ. Kalkan, “Microstructural properties of lithium-added cement mortars subjected to alkali–silica reactions,” Sādhanā, vol. 43, no. 7, p. 112, Jul. 2018, doi: 10.1007/s12046-018-0901-3.
  • [6] F. Naiqian, J. Hongwei, and C. Enyi, “Study on the suppression effect of natural zeolite on expansion of concrete due to alkali-aggregate reaction,” Mag. Concr. Res., vol. 50, no. 1, pp. 17–24, Mar. 1998, doi: 10.1680/macr.1998.50.1.17.
  • [7] L. S. Dent Glasser and N. Kataoka, “The chemistry of ‘alkali-aggregate’ reaction,” Cem. Concr. Res., vol. 11, no. 1, pp. 1–9, Jan. 1981, doi: 10.1016/0008-8846(81)90003-X.
  • [8] N. Thaulow, H. Jakobsen, Ulla, and B. Clark, “Composition of alkali silica gel and ettringite in concrete railroad ties: SEM-EDX and X-ray diffraction analyses,” Cem. Concr. Res., vol. 26, no. 2, pp. 309–318, Feb. 1996, doi: 10.1016/0008-8846(95)00219-7.
  • [9] I. Fernandes, “Composition of alkali–silica reaction products at different locations within concrete structures,” Mater. Charact., vol. 60, no. 7, pp. 655–668, Jul. 2009, doi: 10.1016/j.matchar.2009.01.011.
  • [10] T. Katayama, “Petrographic Study of the Alkali-Aggregate Reactions in Concrete,” University of Tokyo, 2012.
  • [11] A. Leemann and C. Merz, “An attempt to validate the ultra-accelerated microbar and the concrete performance test with the degree of AAR-induced damage observed in concrete structures,” Cem. Concr. Res., vol. 49, pp. 29–37, Jul. 2013, doi: 10.1016/j.cemconres.2013.03.014.
  • [12] A. Gholizadeh‐Vayghan and F. Rajabipour, “Quantifying the swelling properties of alkali‐silica reaction (ASR) gels as a function of their composition,” J. Am. Ceram. Soc., vol. 100, no. 8, pp. 3801–3818, Aug. 2017, doi: 10.1111/jace.14893.
  • [13] P. M. Gifford and J. E. Gillott, “Alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR) in activated blast furnace slag cement (ABFSC) concrete,” Cem. Concr. Res., vol. 26, no. 1, pp. 21–26, Jan. 1996, doi: 10.1016/0008-8846(95)00182-4.
  • [14] Z. Xie, W. Xiang, and Y. Xi, “ASR Potentials of Glass Aggregates in Water-Glass Activated Fly Ash and Portland Cement Mortars,” J. Mater. Civ. Eng., vol. 15, no. 1, pp. 67–74, Feb. 2003, doi: 10.1061/(ASCE)0899-1561(2003)15:1(67).
  • [15] S. Tuylu, “Effect of different particle size distribution of zeolite on the strength of cemented paste backfill,” Int. J. Environ. Sci. Technol., Sep. 2021, doi: 10.1007/s13762-021-03659-7.
  • [16] I. García-Lodeiro, A. Palomo, and A. Fernández-Jiménez, “Alkali–aggregate reaction in activated fly ash systems,” Cem. Concr. Res., vol. 37, no. 2, pp. 175–183, Feb. 2007, doi: 10.1016/j.cemconres.2006.11.002.
  • [17] F. Puertas, M. Palacios, A. Gil-Maroto, and T. Vázquez, “Alkali-aggregate behaviour of alkali-activated slag mortars: Effect of aggregate type,” Cem. Concr. Compos., vol. 31, no. 5, pp. 277–284, May 2009, doi: 10.1016/j.cemconcomp.2009.02.008.
  • [18] M. Thomas, A. Dunster, P. Nixon, and B. Blackwell, “Effect of fly ash on the expansion of concrete due to alkali-silica reaction – Exposure site studies,” Cem. Concr. Compos., vol. 33, no. 3, pp. 359–367, Mar. 2011, doi: 10.1016/j.cemconcomp.2010.11.006.
  • [19] Y. Kawabata and K. Yamada, “The mechanism of limited inhibition by fly ash on expansion due to alkali–silica reaction at the pessimum proportion,” Cem. Concr. Res., vol. 92, pp. 1–15, Feb. 2017, doi: 10.1016/j.cemconres.2016.11.002.
  • [20] Z. Shi, C. Shi, S. Wan, and Z. Ou, “Effect of alkali dosage on alkali-silica reaction in sodium hydroxide activated slag mortars,” Constr. Build. Mater., vol. 143, pp. 16–23, Jul. 2017, doi: 10.1016/j.conbuildmat.2017.03.125.
  • [21] R. Tänzer, Y. Jin, and D. Stephan, “Effect of the inherent alkalis of alkali activated slag on the risk of alkali silica reaction,” Cem. Concr. Res., vol. 98, pp. 82–90, Aug. 2017, doi: 10.1016/j.cemconres.2017.04.009.
  • [22] D. Adiguzel, A. Bascetin, and S. A. Baray, “Determination of Optimal Aggregate Blending to Prevent Alkali-Silica Reaction Using the Mixture Design Method,” J. Test. Eval., vol. 47, no. 1, p. 20160441, Jan. 2019, doi: 10.1520/JTE20160441.
  • [23] A. Bascetin, D. Adiguzel, H. Eker, E. Odabas, and S. Tuylu, “Effects of puzzolanic materials in surface paste disposal by pilot-scale tests: observation of physical changes,” Int. J. Environ. Sci. Technol., Aug. 2020, doi: 10.1007/s13762-020-02892-w.
  • [24] T. Yang, Z. Zhang, Q. Wang, and Q. Wu, “ASR potential of nickel slag fine aggregate in blast furnace slag-fly ash geopolymer and Portland cement mortars,” Constr. Build. Mater., vol. 262, p. 119990, Nov. 2020, doi: 10.1016/j.conbuildmat.2020.119990.
  • [25] A. U. Shettima, M. W. Hussin, Y. Ahmad, and J. Mirza, “Evaluation of iron ore tailings as replacement for fine aggregate in concrete,” Constr. Build. Mater., vol. 120, pp. 72–79, Sep. 2016, doi: 10.1016/j.conbuildmat.2016.05.095.
  • [26] S. M. H. Shafaatian, A. Akhavan, H. Maraghechi, and F. Rajabipour, “How does fly ash mitigate alkali–silica reaction (ASR) in accelerated mortar bar test (ASTM C1567)?,” Cem. Concr. Compos., vol. 37, pp. 143–153, Mar. 2013, doi: 10.1016/j.cemconcomp.2012.11.004.
  • [27] F. Rajabipour, E. Giannini, C. Dunant, J. H. Ideker, and M. D. A. Thomas, “Alkali–silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps,” Cem. Concr. Res., vol. 76, pp. 130–146, Oct. 2015, doi: 10.1016/j.cemconres.2015.05.024.
  • [28] S. Chatterji, A. D. Jensen, N. Thaulow, and P. Christensen, “Studies of alkali-silica reaction. Part 3. Mechanisms by which NaCl and Ca(OH)2 affect the reaction,” Cem. Concr. Res., vol. 16, no. 2, pp. 246–254, Mar. 1986, doi: 10.1016/0008-8846(86)90141-9.
  • [29] S. Joseph, R. Snellings, and Ö. Cizer, “Activation of Portland cement blended with high volume of fly ash using Na2SO4,” Cem. Concr. Compos., vol. 104, p. 103417, Nov. 2019, doi: 10.1016/j.cemconcomp.2019.103417.
  • [30] K. . Kurtis, P. J. . Monteiro, J. . Brown, and W. Meyer-Ilse, “Imaging of ASR Gel by Soft X-Ray Microscopy,” Cem. Concr. Res., vol. 28, no. 3, pp. 411–421, Mar. 1998, doi: 10.1016/S0008-8846(97)00274-3.
  • [31] Z. Shi and B. Lothenbach, “The role of calcium on the formation of alkali-silica reaction products,” Cem. Concr. Res., vol. 126, p. 105898, Dec. 2019, doi: 10.1016/j.cemconres.2019.105898.
  • [32] R. F. Bleszynski and M. D. A. Thomas, “Microstructural Studies of Alkali-Silica Reaction in Fly Ash Concrete Immersed in Alkaline Solutions,” Adv. Cem. Based Mater., vol. 7, no. 2, pp. 66–78, Mar. 1998, doi: 10.1016/S1065-7355(97)00030-8.
  • [33] S. Guo, Q. Dai, X. Sun, X. Xiao, R. Si, and J. Wang, “Reduced alkali-silica reaction damage in recycled glass mortar samples with supplementary cementitious materials,” J. Clean. Prod., vol. 172, pp. 3621–3633, Jan. 2018, doi: 10.1016/j.jclepro.2017.11.119.
  • [34] T. Chappex and K. L. Scrivener, “The influence of aluminium on the dissolution of amorphous silica and its relation to alkali silica reaction,” Cem. Concr. Res., vol. 42, no. 12, pp. 1645–1649, Dec. 2012, doi: 10.1016/j.cemconres.2012.09.009.
  • [35] ASTM C1260, “Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method),” West Conshohocken, PA, 2021. doi: 10.1520/C1260-21.
  • [36] A. Brykov and A. Anisimova, “Efficacy of Aluminum Hydroxides as Inhibitors of Alkali-Silica Reactions,” Mater. Sci. Appl., vol. 04, no. 12, pp. 1–6, 2013, doi: 10.4236/msa.2013.412A001.
  • [37] S.-Y. Hong and F. . Glasser, “Alkali sorption by C-S-H and C-A-S-H gels,” Cem. Concr. Res., vol. 32, no. 7, pp. 1101–1111, Jul. 2002, doi: 10.1016/S0008-8846(02)00753-6.
  • [38] M. Thomas, “The effect of supplementary cementing materials on alkali-silica reaction: A review,” Cem. Concr. Res., vol. 41, no. 12, pp. 1224–1231, Dec. 2011, doi: 10.1016/j.cemconres.2010.11.003.
  • [39] B. F. K.J. Folliard, R. Barborak, T. Drimalas, L. Du, S. Garber, J. Ideker, T. Ley, S. Williams, M. Juenger, “Preventing ASR/DEF in New Concrete,” 2006.
  • [40] R. B. Figueira et al., “Alkali-silica reaction in concrete: Mechanisms, mitigation and test methods,” Constr. Build. Mater., vol. 222, pp. 903–931, Oct. 2019, doi: 10.1016/j.conbuildmat.2019.07.230.
  • [41] R. Hay and C. P. Ostertag, “New insights into the role of fly ash in mitigating alkali-silica reaction (ASR) in concrete,” Cem. Concr. Res., vol. 144, p. 106440, Jun. 2021, doi: 10.1016/j.cemconres.2021.106440.
  • [42] D. Demir, Şahin, M. Çullu, and H. Eker, “Betona Eklenen Uçucu Külün Aşındırma ve Karbonatlaşma Üzerine Etkisi,” Eur. J. Sci. Technol., pp. 1150–1163, Dec. 2019, doi: 10.31590/ejosat.654733.
  • [43] Türk Standartlar Enstitüsü, “TS EN 196-3: Çimento deney yöntemleri - Bölüm 3: Priz süreleri ve genleşme tayini,” Ankara, Türkiye, 2017.
  • [44] Turkish Standards Institution, “TS EN 450-1: Uçucu Kül - Betonda kullanılan - Bölüm 1: Tarif, özellikler ve uygunluk kriterleri,” Ankara, Türkiye, 2013.
  • [45] S. Oruji et al., “Mitigation of ASR expansion in concrete using ultra-fine coal bottom ash,” Constr. Build. Mater., vol. 202, pp. 814–824, Mar. 2019, doi: 10.1016/j.conbuildmat.2019.01.013.
  • [46] S. Ramjan, W. Tangchirapat, C. Jaturapitakkul, C. Chee Ban, P. Jitsangiam, and T. Suwan, “Influence of Cement Replacement with Fly Ash and Ground Sand with Different Fineness on Alkali-Silica Reaction of Mortar,” Materials (Basel)., vol. 14, no. 6, p. 1528, Mar. 2021, doi: 10.3390/ma14061528.
  • [47] C.-S. Shon, D. G. Zollinger, and S. L. Sarkar, “Evaluation of modified ASTM C 1260 accelerated mortar bar test for alkali–silica reactivity,” Cem. Concr. Res., vol. 32, no. 12, pp. 1981–1987, Dec. 2002, doi: 10.1016/S0008-8846(02)00903-1.
  • [48] T. C. Esteves, R. Rajamma, D. Soares, A. S. Silva, V. M. Ferreira, and J. A. Labrincha, “Use of biomass fly ash for mitigation of alkali-silica reaction of cement mortars,” Constr. Build. Mater., vol. 26, no. 1, pp. 687–693, Jan. 2012, doi: 10.1016/j.conbuildmat.2011.06.075.
  • [49] S. Hsu, M. Chi, and R. Huang, “Effect of fineness and replacement ratio of ground fly ash on properties of blended cement mortar,” Constr. Build. Mater., vol. 176, pp. 250–258, Jul. 2018, doi: 10.1016/j.conbuildmat.2018.05.060.
  • [50] S. Hsu, M. Chi, and R. Huang, “Influence of Fty Ash Fineness and High Replacement Ratios on Concrete Properties,” J. Mar. Sci. Technol., vol. 27, no. 9, 2019.
Year 2023, , 351 - 360, 20.06.2023
https://doi.org/10.24012/dumf.1158420

Abstract

References

  • [1] M. D. A. T. K. J. F. B. F. T. D. S. I. Garber, “Methods for Preventing ASR in New Construction: Results of Field Exposure Sites,” United States, 2013.
  • [2] M.-A. Berube and B. Fournier, “Les produits de la reaction alcalis-silice dans le beton; etude de cas de la region de Quebec,” Can. Mineral., vol. 24, no. 2, pp. 271–288, Jun. 1986.
  • [3] E. Grimal, “Caractérisation des effets du gonflement provoqué par la réaction alcali-silice sur le comportement mécanique d’une structure en béton,” Université Paul Sabatier, Toulouse, France, 2007.
  • [4] A. . Rodrigue, J. . Duchesne, B. . Fournier, M. . Champagne, and B. . Bissonnette, “Alkali-silica reaction in alkali-activated combined slag and fly ash concretes: The tempering effect of fly ash on expansion and cracking,” Constr. Build. Mater., vol. 251, p. 118968, Aug. 2020, doi: 10.1016/j.conbuildmat.2020.118968.
  • [5] İ. Demir, Ö. Sevim, and İ. Kalkan, “Microstructural properties of lithium-added cement mortars subjected to alkali–silica reactions,” Sādhanā, vol. 43, no. 7, p. 112, Jul. 2018, doi: 10.1007/s12046-018-0901-3.
  • [6] F. Naiqian, J. Hongwei, and C. Enyi, “Study on the suppression effect of natural zeolite on expansion of concrete due to alkali-aggregate reaction,” Mag. Concr. Res., vol. 50, no. 1, pp. 17–24, Mar. 1998, doi: 10.1680/macr.1998.50.1.17.
  • [7] L. S. Dent Glasser and N. Kataoka, “The chemistry of ‘alkali-aggregate’ reaction,” Cem. Concr. Res., vol. 11, no. 1, pp. 1–9, Jan. 1981, doi: 10.1016/0008-8846(81)90003-X.
  • [8] N. Thaulow, H. Jakobsen, Ulla, and B. Clark, “Composition of alkali silica gel and ettringite in concrete railroad ties: SEM-EDX and X-ray diffraction analyses,” Cem. Concr. Res., vol. 26, no. 2, pp. 309–318, Feb. 1996, doi: 10.1016/0008-8846(95)00219-7.
  • [9] I. Fernandes, “Composition of alkali–silica reaction products at different locations within concrete structures,” Mater. Charact., vol. 60, no. 7, pp. 655–668, Jul. 2009, doi: 10.1016/j.matchar.2009.01.011.
  • [10] T. Katayama, “Petrographic Study of the Alkali-Aggregate Reactions in Concrete,” University of Tokyo, 2012.
  • [11] A. Leemann and C. Merz, “An attempt to validate the ultra-accelerated microbar and the concrete performance test with the degree of AAR-induced damage observed in concrete structures,” Cem. Concr. Res., vol. 49, pp. 29–37, Jul. 2013, doi: 10.1016/j.cemconres.2013.03.014.
  • [12] A. Gholizadeh‐Vayghan and F. Rajabipour, “Quantifying the swelling properties of alkali‐silica reaction (ASR) gels as a function of their composition,” J. Am. Ceram. Soc., vol. 100, no. 8, pp. 3801–3818, Aug. 2017, doi: 10.1111/jace.14893.
  • [13] P. M. Gifford and J. E. Gillott, “Alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR) in activated blast furnace slag cement (ABFSC) concrete,” Cem. Concr. Res., vol. 26, no. 1, pp. 21–26, Jan. 1996, doi: 10.1016/0008-8846(95)00182-4.
  • [14] Z. Xie, W. Xiang, and Y. Xi, “ASR Potentials of Glass Aggregates in Water-Glass Activated Fly Ash and Portland Cement Mortars,” J. Mater. Civ. Eng., vol. 15, no. 1, pp. 67–74, Feb. 2003, doi: 10.1061/(ASCE)0899-1561(2003)15:1(67).
  • [15] S. Tuylu, “Effect of different particle size distribution of zeolite on the strength of cemented paste backfill,” Int. J. Environ. Sci. Technol., Sep. 2021, doi: 10.1007/s13762-021-03659-7.
  • [16] I. García-Lodeiro, A. Palomo, and A. Fernández-Jiménez, “Alkali–aggregate reaction in activated fly ash systems,” Cem. Concr. Res., vol. 37, no. 2, pp. 175–183, Feb. 2007, doi: 10.1016/j.cemconres.2006.11.002.
  • [17] F. Puertas, M. Palacios, A. Gil-Maroto, and T. Vázquez, “Alkali-aggregate behaviour of alkali-activated slag mortars: Effect of aggregate type,” Cem. Concr. Compos., vol. 31, no. 5, pp. 277–284, May 2009, doi: 10.1016/j.cemconcomp.2009.02.008.
  • [18] M. Thomas, A. Dunster, P. Nixon, and B. Blackwell, “Effect of fly ash on the expansion of concrete due to alkali-silica reaction – Exposure site studies,” Cem. Concr. Compos., vol. 33, no. 3, pp. 359–367, Mar. 2011, doi: 10.1016/j.cemconcomp.2010.11.006.
  • [19] Y. Kawabata and K. Yamada, “The mechanism of limited inhibition by fly ash on expansion due to alkali–silica reaction at the pessimum proportion,” Cem. Concr. Res., vol. 92, pp. 1–15, Feb. 2017, doi: 10.1016/j.cemconres.2016.11.002.
  • [20] Z. Shi, C. Shi, S. Wan, and Z. Ou, “Effect of alkali dosage on alkali-silica reaction in sodium hydroxide activated slag mortars,” Constr. Build. Mater., vol. 143, pp. 16–23, Jul. 2017, doi: 10.1016/j.conbuildmat.2017.03.125.
  • [21] R. Tänzer, Y. Jin, and D. Stephan, “Effect of the inherent alkalis of alkali activated slag on the risk of alkali silica reaction,” Cem. Concr. Res., vol. 98, pp. 82–90, Aug. 2017, doi: 10.1016/j.cemconres.2017.04.009.
  • [22] D. Adiguzel, A. Bascetin, and S. A. Baray, “Determination of Optimal Aggregate Blending to Prevent Alkali-Silica Reaction Using the Mixture Design Method,” J. Test. Eval., vol. 47, no. 1, p. 20160441, Jan. 2019, doi: 10.1520/JTE20160441.
  • [23] A. Bascetin, D. Adiguzel, H. Eker, E. Odabas, and S. Tuylu, “Effects of puzzolanic materials in surface paste disposal by pilot-scale tests: observation of physical changes,” Int. J. Environ. Sci. Technol., Aug. 2020, doi: 10.1007/s13762-020-02892-w.
  • [24] T. Yang, Z. Zhang, Q. Wang, and Q. Wu, “ASR potential of nickel slag fine aggregate in blast furnace slag-fly ash geopolymer and Portland cement mortars,” Constr. Build. Mater., vol. 262, p. 119990, Nov. 2020, doi: 10.1016/j.conbuildmat.2020.119990.
  • [25] A. U. Shettima, M. W. Hussin, Y. Ahmad, and J. Mirza, “Evaluation of iron ore tailings as replacement for fine aggregate in concrete,” Constr. Build. Mater., vol. 120, pp. 72–79, Sep. 2016, doi: 10.1016/j.conbuildmat.2016.05.095.
  • [26] S. M. H. Shafaatian, A. Akhavan, H. Maraghechi, and F. Rajabipour, “How does fly ash mitigate alkali–silica reaction (ASR) in accelerated mortar bar test (ASTM C1567)?,” Cem. Concr. Compos., vol. 37, pp. 143–153, Mar. 2013, doi: 10.1016/j.cemconcomp.2012.11.004.
  • [27] F. Rajabipour, E. Giannini, C. Dunant, J. H. Ideker, and M. D. A. Thomas, “Alkali–silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps,” Cem. Concr. Res., vol. 76, pp. 130–146, Oct. 2015, doi: 10.1016/j.cemconres.2015.05.024.
  • [28] S. Chatterji, A. D. Jensen, N. Thaulow, and P. Christensen, “Studies of alkali-silica reaction. Part 3. Mechanisms by which NaCl and Ca(OH)2 affect the reaction,” Cem. Concr. Res., vol. 16, no. 2, pp. 246–254, Mar. 1986, doi: 10.1016/0008-8846(86)90141-9.
  • [29] S. Joseph, R. Snellings, and Ö. Cizer, “Activation of Portland cement blended with high volume of fly ash using Na2SO4,” Cem. Concr. Compos., vol. 104, p. 103417, Nov. 2019, doi: 10.1016/j.cemconcomp.2019.103417.
  • [30] K. . Kurtis, P. J. . Monteiro, J. . Brown, and W. Meyer-Ilse, “Imaging of ASR Gel by Soft X-Ray Microscopy,” Cem. Concr. Res., vol. 28, no. 3, pp. 411–421, Mar. 1998, doi: 10.1016/S0008-8846(97)00274-3.
  • [31] Z. Shi and B. Lothenbach, “The role of calcium on the formation of alkali-silica reaction products,” Cem. Concr. Res., vol. 126, p. 105898, Dec. 2019, doi: 10.1016/j.cemconres.2019.105898.
  • [32] R. F. Bleszynski and M. D. A. Thomas, “Microstructural Studies of Alkali-Silica Reaction in Fly Ash Concrete Immersed in Alkaline Solutions,” Adv. Cem. Based Mater., vol. 7, no. 2, pp. 66–78, Mar. 1998, doi: 10.1016/S1065-7355(97)00030-8.
  • [33] S. Guo, Q. Dai, X. Sun, X. Xiao, R. Si, and J. Wang, “Reduced alkali-silica reaction damage in recycled glass mortar samples with supplementary cementitious materials,” J. Clean. Prod., vol. 172, pp. 3621–3633, Jan. 2018, doi: 10.1016/j.jclepro.2017.11.119.
  • [34] T. Chappex and K. L. Scrivener, “The influence of aluminium on the dissolution of amorphous silica and its relation to alkali silica reaction,” Cem. Concr. Res., vol. 42, no. 12, pp. 1645–1649, Dec. 2012, doi: 10.1016/j.cemconres.2012.09.009.
  • [35] ASTM C1260, “Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method),” West Conshohocken, PA, 2021. doi: 10.1520/C1260-21.
  • [36] A. Brykov and A. Anisimova, “Efficacy of Aluminum Hydroxides as Inhibitors of Alkali-Silica Reactions,” Mater. Sci. Appl., vol. 04, no. 12, pp. 1–6, 2013, doi: 10.4236/msa.2013.412A001.
  • [37] S.-Y. Hong and F. . Glasser, “Alkali sorption by C-S-H and C-A-S-H gels,” Cem. Concr. Res., vol. 32, no. 7, pp. 1101–1111, Jul. 2002, doi: 10.1016/S0008-8846(02)00753-6.
  • [38] M. Thomas, “The effect of supplementary cementing materials on alkali-silica reaction: A review,” Cem. Concr. Res., vol. 41, no. 12, pp. 1224–1231, Dec. 2011, doi: 10.1016/j.cemconres.2010.11.003.
  • [39] B. F. K.J. Folliard, R. Barborak, T. Drimalas, L. Du, S. Garber, J. Ideker, T. Ley, S. Williams, M. Juenger, “Preventing ASR/DEF in New Concrete,” 2006.
  • [40] R. B. Figueira et al., “Alkali-silica reaction in concrete: Mechanisms, mitigation and test methods,” Constr. Build. Mater., vol. 222, pp. 903–931, Oct. 2019, doi: 10.1016/j.conbuildmat.2019.07.230.
  • [41] R. Hay and C. P. Ostertag, “New insights into the role of fly ash in mitigating alkali-silica reaction (ASR) in concrete,” Cem. Concr. Res., vol. 144, p. 106440, Jun. 2021, doi: 10.1016/j.cemconres.2021.106440.
  • [42] D. Demir, Şahin, M. Çullu, and H. Eker, “Betona Eklenen Uçucu Külün Aşındırma ve Karbonatlaşma Üzerine Etkisi,” Eur. J. Sci. Technol., pp. 1150–1163, Dec. 2019, doi: 10.31590/ejosat.654733.
  • [43] Türk Standartlar Enstitüsü, “TS EN 196-3: Çimento deney yöntemleri - Bölüm 3: Priz süreleri ve genleşme tayini,” Ankara, Türkiye, 2017.
  • [44] Turkish Standards Institution, “TS EN 450-1: Uçucu Kül - Betonda kullanılan - Bölüm 1: Tarif, özellikler ve uygunluk kriterleri,” Ankara, Türkiye, 2013.
  • [45] S. Oruji et al., “Mitigation of ASR expansion in concrete using ultra-fine coal bottom ash,” Constr. Build. Mater., vol. 202, pp. 814–824, Mar. 2019, doi: 10.1016/j.conbuildmat.2019.01.013.
  • [46] S. Ramjan, W. Tangchirapat, C. Jaturapitakkul, C. Chee Ban, P. Jitsangiam, and T. Suwan, “Influence of Cement Replacement with Fly Ash and Ground Sand with Different Fineness on Alkali-Silica Reaction of Mortar,” Materials (Basel)., vol. 14, no. 6, p. 1528, Mar. 2021, doi: 10.3390/ma14061528.
  • [47] C.-S. Shon, D. G. Zollinger, and S. L. Sarkar, “Evaluation of modified ASTM C 1260 accelerated mortar bar test for alkali–silica reactivity,” Cem. Concr. Res., vol. 32, no. 12, pp. 1981–1987, Dec. 2002, doi: 10.1016/S0008-8846(02)00903-1.
  • [48] T. C. Esteves, R. Rajamma, D. Soares, A. S. Silva, V. M. Ferreira, and J. A. Labrincha, “Use of biomass fly ash for mitigation of alkali-silica reaction of cement mortars,” Constr. Build. Mater., vol. 26, no. 1, pp. 687–693, Jan. 2012, doi: 10.1016/j.conbuildmat.2011.06.075.
  • [49] S. Hsu, M. Chi, and R. Huang, “Effect of fineness and replacement ratio of ground fly ash on properties of blended cement mortar,” Constr. Build. Mater., vol. 176, pp. 250–258, Jul. 2018, doi: 10.1016/j.conbuildmat.2018.05.060.
  • [50] S. Hsu, M. Chi, and R. Huang, “Influence of Fty Ash Fineness and High Replacement Ratios on Concrete Properties,” J. Mar. Sci. Technol., vol. 27, no. 9, 2019.
There are 50 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Hasan Eker 0000-0003-2644-4681

Demet Demir Şahin 0000-0003-0338-6562

Mustafa Çullu 0000-0002-0454-7949

Early Pub Date June 19, 2023
Publication Date June 20, 2023
Submission Date August 5, 2022
Published in Issue Year 2023

Cite

IEEE H. Eker, D. Demir Şahin, and M. Çullu, “Betonda ince uçucu kül kullanımı ile ASR genleşmesinin azaltılması”, DÜMF MD, vol. 14, no. 2, pp. 351–360, 2023, doi: 10.24012/dumf.1158420.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456