Uydu verilerinden karar ağaçları kullanarak orman yangını tahmini
Year 2020,
, 899 - 906, 30.09.2020
Nurettin Beşli
,
Emin Tenekeci
Abstract
Tüm canlılık için önemli olan ormanların, yangınlar ile yok edilmesi doğaya verdiği zararın yanı sıra can ve mal güvenliğini de ciddi şekilde tehdit eder. Orman yangınları doğal yollarla veya bilinçli insan davranışları ile gerçekleşir. Orman yangınlarının önceden tahmini veya erken keşfi hızlı müdahale ve önlem almayı sağlayacaktır. Literatürde orman yangınlarını tahmin etmek için meteorolojik verileri ve uzaktan algılama verileri kullanılmaktadır. Bununla birlikte meteorolojik veriler ile mevcut orman yangının davranışı da belirlenebilmektedir. Bu çalışmada uydulardan alınan veriler ile orman yangınlarının tahmini yapılmıştır. Uydudan alınan verilerden hesaplanan Normalize Edilmiş Fark Bitki Örtüsü İndeksi (NVDI), Arazi Yüzeyi Sıcaklığı (LST) ve Termal anomali (TA) verileri kullanılarak orman yangınları tahmin edilmiştir. Bahsedilen verilerden tahmin yapmak için karar ağaçları kullanılmıştır. Karar ağaçlarının eğitiminde kullanılmak için veri setindeki verilerin %70’ i kullanılmıştır. Geri kalan %30 veri ile oluşturulan modelin testi gerçekleştirilmiştir. Eğitim ve test işlemi farklı veriler ile 10 defa tekrarlı yapılarak uygulanan yöntemin ortalama performansı belirlenmiştir. Gerçekleştirilen denemelerde ortalama %98,62 duyarlılık oranı ile gerçekleşen yangınlar doğru tahmin edilmiştir. Tüm denemelerde yapılan tahminler için ortalama %93,11 doğruluk ile gerçek durum belirlenmiştir.
References
- Dayananda P. W. A., “Stochastic models for forest fires”, Ecological Modeling, Volume 3 (1977), 309-313.
- Altan, G., Türkeş, M., Tatlı, H., “Çanakkale ve Muğla 2009 yılı orman yangınlarının Keetch-Byram Kuraklık İndisi ile klimatolojik ve meteorolojik analizi.” In: 5th Atmospheric Science Symposium Proceedings Book: 263-274. Istanbul Technical University, 27-29 April 2011, Istanbul. Turkey.
- Türkiye Cumhuriyeti Orman genel müdürlüğü, https://www.ogm.gov.tr/ekutuphane/Sayfalar/Istatistikler.aspx (Erişim 10/01/2019)
- C.S. Eastaugh, H. Hasenauer, “Deriving forest fire ignition risk with biogeochemical process modelling Environ.” Model. Softw., 55 (2014), pp. 132-142
- Tedim F., Leone V., Amraoui M., Bouillon C., Coughlan M., Delogu G., Fernandes P., Ferreira C., McCaffrey S., McGee T., Parente J., Paton D., Pereira M., Ribeiro L., Viegas D., Xanthopoulos G., “Defining extreme wildfire events: difficulties, challenges, and impacts Fire” 1 (1) (2018), p. 9
- Gümüşçü A., Tenekeci M. E., “Estimation of active sperm count in spermiogram using motion detection methods”, Journal of the Faculty of Engineering and Architecture of Gazi University (2018), https://doi.or./10.17341/gazimmfd.460524
- Karadağ K., Tenekeci M.E., Taşaltın R., Bilgili A., “Detection of pepper fusarium disease using machine learning algorithms based on spectral reflectance”, Sustainable Computing: Informatics and Systems, 2019, Article in Press.
- Gümüşçü A., Tenekeci M.E., Bilgili A.V. “Estimation of wheat planting date using machine learning algorithms based on available climate data”, (2019) Sustainable Computing: Informatics and Systems. Article in Press.
- Lejdel B., “Conceptual Framework for Analyzing Knowledge in Social Big Data.”, Proceeding Big Data and Smart Digital Environment. ICBDSDE 2018. Studies in Big Data, vol 53, pp 347-358.
- Chi M., Plaza A., Benediktsson J.A., Sun Z., Shen J., Zhu Y., “Big data for remote sensing: challenges and opportunities”, Proc. IEEE, 104 (11) (2016), pp. 2207-2219
- Ramapriyan H., Brennan J., Walter J., Behnke J., “Managing big Data: NASA tackles complex Data challenges”, Earth Imaging J. (2013) [Online].
- Vega-Garcia C., Lee B., Woodard P., Titus S., “Applying neural network technology to human-caused wildfire occurrence prediction”, AI Appl., 10 (3) (1996), pp. 9-18
- Cheng T., Wang J., “Integrated spatio-temporal data mining for forest fire prediction”, Trans. GIS, 12 (5) (2008), pp. 591-611
- Satir O., Berberoglu S., Donmez C., “Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem Geomatics”, Natural Hazards and Risk (2015), pp. 1-14
- Camp A., Oliver C., Hessburg P., Everett R., “Predicting late-successional fire refugia pre-dating European settlement in the Wenatchee mountains”, For. Ecol. Manage., 95 (1) (1997), pp. 63-77
- Arpaci A., Malowerschnig B., Sass O., Vacik H., “Using multi variate data mining techniques for estimating fire susceptibility of Tyrolean”, forests Appl. Geogr., 53 (2014), pp. 258-270
- Castelli M., Vanneschi L., Popovic A., “Predicting burned areas of forest fires: an artificial intelligence approach”, Fire Ecol., 11 (2015), pp. 106-118
- Arrue B., Ollero A., Matinez de Dios J., “An intelligent system for false alarm reduction in infrared forest-fire detection”, IEEE Intell. Syst., 15 (3) (2000), pp. 64-73
- Cortez P., Morais A., “A data mining approach to predict wildfires using meteorological data”, Proc. 13th Port. Conf. Artif. Intell (2007), pp. 512-523
- Sayad, Y. O., Mousannif, H., Moatassime, H. A., “Predictive modeling of wildfires: A new dataset and machine learning approach”, Fire Safety Journal, Volume 104, 2019, Pages 130-146
- The Canadian Wildland Fire Information System (CWFIS) http://cwfis.cfs.nrcan.gc.ca/.
- MODIS data products, Courtesy of the NASA Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth
- Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, https://lpdaac.usgs.gov.
- Quinlan J.R., 1993, “C4.5: Programs for Machine Learning”, Morgan Kaufmann, San Mateo, CA, 302 s
- Friedl M.A., Brodley C.E., 1997, “Decision tree classification of land cover from remotely sensed data”, Remote Sensing of Environment, 61, 399–409
- DeFries R., Hansen M., Townshend J.R.G., Sohlberg R., 1998, “Global land cover classifications at 8 km spatial resolution: the use of training data derived from Landsat imagery in decision tree classifiers”, International Journal of Remote Sensing, 19, 3141–3168
- Pal M., Mather P.M., 2003, “An assessment of the effectiveness of decision tree methods for land cover classification”, Remote Sensing of Environment, 86, 554-565
- Li Z., Dunham M.H., Xiao Y., Zaïane O.R., Simoff S.J., Djeraba C. (Eds.), “STIFF: a forecasting framework for SpatioTemporal data”, Mining Multimedia and Complex Data. PAKDD 2002. Lecture Notes in Computer Science, vol. 2797, Springer, Berlin, Heidelberg (2003)
- Cheng T., Wang J., “Integrated spatiotemporal Data Mining for forest fire prediction”, Trans. GIS, 12 (5) (2008), pp. 591-611
Year 2020,
, 899 - 906, 30.09.2020
Nurettin Beşli
,
Emin Tenekeci
References
- Dayananda P. W. A., “Stochastic models for forest fires”, Ecological Modeling, Volume 3 (1977), 309-313.
- Altan, G., Türkeş, M., Tatlı, H., “Çanakkale ve Muğla 2009 yılı orman yangınlarının Keetch-Byram Kuraklık İndisi ile klimatolojik ve meteorolojik analizi.” In: 5th Atmospheric Science Symposium Proceedings Book: 263-274. Istanbul Technical University, 27-29 April 2011, Istanbul. Turkey.
- Türkiye Cumhuriyeti Orman genel müdürlüğü, https://www.ogm.gov.tr/ekutuphane/Sayfalar/Istatistikler.aspx (Erişim 10/01/2019)
- C.S. Eastaugh, H. Hasenauer, “Deriving forest fire ignition risk with biogeochemical process modelling Environ.” Model. Softw., 55 (2014), pp. 132-142
- Tedim F., Leone V., Amraoui M., Bouillon C., Coughlan M., Delogu G., Fernandes P., Ferreira C., McCaffrey S., McGee T., Parente J., Paton D., Pereira M., Ribeiro L., Viegas D., Xanthopoulos G., “Defining extreme wildfire events: difficulties, challenges, and impacts Fire” 1 (1) (2018), p. 9
- Gümüşçü A., Tenekeci M. E., “Estimation of active sperm count in spermiogram using motion detection methods”, Journal of the Faculty of Engineering and Architecture of Gazi University (2018), https://doi.or./10.17341/gazimmfd.460524
- Karadağ K., Tenekeci M.E., Taşaltın R., Bilgili A., “Detection of pepper fusarium disease using machine learning algorithms based on spectral reflectance”, Sustainable Computing: Informatics and Systems, 2019, Article in Press.
- Gümüşçü A., Tenekeci M.E., Bilgili A.V. “Estimation of wheat planting date using machine learning algorithms based on available climate data”, (2019) Sustainable Computing: Informatics and Systems. Article in Press.
- Lejdel B., “Conceptual Framework for Analyzing Knowledge in Social Big Data.”, Proceeding Big Data and Smart Digital Environment. ICBDSDE 2018. Studies in Big Data, vol 53, pp 347-358.
- Chi M., Plaza A., Benediktsson J.A., Sun Z., Shen J., Zhu Y., “Big data for remote sensing: challenges and opportunities”, Proc. IEEE, 104 (11) (2016), pp. 2207-2219
- Ramapriyan H., Brennan J., Walter J., Behnke J., “Managing big Data: NASA tackles complex Data challenges”, Earth Imaging J. (2013) [Online].
- Vega-Garcia C., Lee B., Woodard P., Titus S., “Applying neural network technology to human-caused wildfire occurrence prediction”, AI Appl., 10 (3) (1996), pp. 9-18
- Cheng T., Wang J., “Integrated spatio-temporal data mining for forest fire prediction”, Trans. GIS, 12 (5) (2008), pp. 591-611
- Satir O., Berberoglu S., Donmez C., “Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem Geomatics”, Natural Hazards and Risk (2015), pp. 1-14
- Camp A., Oliver C., Hessburg P., Everett R., “Predicting late-successional fire refugia pre-dating European settlement in the Wenatchee mountains”, For. Ecol. Manage., 95 (1) (1997), pp. 63-77
- Arpaci A., Malowerschnig B., Sass O., Vacik H., “Using multi variate data mining techniques for estimating fire susceptibility of Tyrolean”, forests Appl. Geogr., 53 (2014), pp. 258-270
- Castelli M., Vanneschi L., Popovic A., “Predicting burned areas of forest fires: an artificial intelligence approach”, Fire Ecol., 11 (2015), pp. 106-118
- Arrue B., Ollero A., Matinez de Dios J., “An intelligent system for false alarm reduction in infrared forest-fire detection”, IEEE Intell. Syst., 15 (3) (2000), pp. 64-73
- Cortez P., Morais A., “A data mining approach to predict wildfires using meteorological data”, Proc. 13th Port. Conf. Artif. Intell (2007), pp. 512-523
- Sayad, Y. O., Mousannif, H., Moatassime, H. A., “Predictive modeling of wildfires: A new dataset and machine learning approach”, Fire Safety Journal, Volume 104, 2019, Pages 130-146
- The Canadian Wildland Fire Information System (CWFIS) http://cwfis.cfs.nrcan.gc.ca/.
- MODIS data products, Courtesy of the NASA Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth
- Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, https://lpdaac.usgs.gov.
- Quinlan J.R., 1993, “C4.5: Programs for Machine Learning”, Morgan Kaufmann, San Mateo, CA, 302 s
- Friedl M.A., Brodley C.E., 1997, “Decision tree classification of land cover from remotely sensed data”, Remote Sensing of Environment, 61, 399–409
- DeFries R., Hansen M., Townshend J.R.G., Sohlberg R., 1998, “Global land cover classifications at 8 km spatial resolution: the use of training data derived from Landsat imagery in decision tree classifiers”, International Journal of Remote Sensing, 19, 3141–3168
- Pal M., Mather P.M., 2003, “An assessment of the effectiveness of decision tree methods for land cover classification”, Remote Sensing of Environment, 86, 554-565
- Li Z., Dunham M.H., Xiao Y., Zaïane O.R., Simoff S.J., Djeraba C. (Eds.), “STIFF: a forecasting framework for SpatioTemporal data”, Mining Multimedia and Complex Data. PAKDD 2002. Lecture Notes in Computer Science, vol. 2797, Springer, Berlin, Heidelberg (2003)
- Cheng T., Wang J., “Integrated spatiotemporal Data Mining for forest fire prediction”, Trans. GIS, 12 (5) (2008), pp. 591-611