Research Article
BibTex RIS Cite

Β-Siklodekstrin Bazlı Kompozitin Sentezi ve Katyonik Boya Gideriminde Kullanımı

Year 2020, , 1205 - 1212, 30.09.2020
https://doi.org/10.24012/dumf.665705

Abstract

Bu çalışmanın amacı, β-siklodektrin bazlı kompozit sentezlemek ve katyonik boya maddesi gideriminde kullanmaktır. Adsorpsiyon deneyleri beç yöntemi kullanılarak uygun şartlarda gerçekleştirilmiştir. Karakterizasyon çalışmaları için kompozitin boya maddesi giderim öncesi ve sonrası spektrumları fourier dönüşüm kızılötesi (FT-IR) spektroskopisi ile incelenmiştir. Boyar madde adsorpsiyonuna temas süresi, başlangıç boya madde derişimi ile pH etkisi gibi parametreler araştırıldı. Adsorpsiyon için en uygun pH’ nın 8 olduğu bulunmuştur (deneysel şartlar: başlangıç boya derişimi (Co): 100 mg/L, sıcaklık (T): 25 oC, karıştırma hızı (r): 140 rpm, adsorbent miktarı (m): 10 mg, boyar madde çözelti hacmi (V): 50 mL). pH etkisi deneysel koşuları için pH: 3,4, 5, 6, 7, 8 olarak sabitlenmiş 6 farklı boya çözeltisi kullanılmıştır. Adsorpsiyon deneyleri, adsorpsiyon kapasitesinin deneysel değişkenlerine bağımlı ve dolayısıyla adsorpsiyonun pH'a bağımlı olduğunu göstermiştir. Bunun yanında, adsorpsiyon mekanizması psödo-birinci-mertebe ve psödo-ikinci-mertebe kinetik modellerinde değerlendirilmiştir. Deneysel verilerden elde edilen sonuçlara göre, korelasyon kat sayılarının daha büyük olması dolayısıyla (R2 > 0.99), psödo-ikinci-mertebe kinetik modelinin katyonik boya giderimi için psödo-birinci mertebe kinetik modeline göre daha elverişli olduğu tespit edilmiştir. Elde edilen verilerden en yüksek boya adsorpsiyon kapasitesinin 240.12 mg/g olduğu rapor edilmiştir (Co: 300 mg/L, T: 25 oC, r: 140 rpm). Sonuç olarak sentezlenen kompozit maddenin adsorpsiyon kapasitesinin iyi olması nedeniyle katyonik boya gideriminde uygun bir malzeme olduğu söylenebilir.

References

  • [1] Baran, F., Duz, Z., Uzan, S., Dolak, İ., Celik, S., Kilinc E., (2018). Removal of Hg(II) from Aqueous Solution by Bacillus subtilis ATCC 6051 (B1). Journal of Bioprocessing & Biotechniques, 8, 4, 1-7.
  • [2] Hanafy, H., Sellaoui, L., Thue, P. S., Lima, E. C., Dotto, G. L., Alharbi, T., Belmabrouk, H., Bonilla-Petriciolet, A., Lamin A. B., (2019, online). Statistical physics modeling and interpretation of the adsorption of dyeremazol black B on natural and carbonized biomasses. Journal of Molecular Liquids, xxx, xxx.
  • [3] Jawad, A. H., Mubarak, N. S. A., Abdulhameed A. S., (2019, online). Tunable Schiff’s base-cross-linked chitosan composite for the removal ofreactive red 120 dye: Adsorption and mechanism study. International Journal of Biological Macromolecules, xxx (xxxx) xxx.
  • [4] Baran, M. F., Duz, Z., (2019). Biosorption of Pb2+ from aqueous solutions by Bacillus licheniformis isolated from Tigris river with a comparative study. International Journal of Latest Engineering and Management Research, 4, 5, 108-121. [5] Gamoudi, S., Srasra E., (2019). Adsorption of organic dyes by HDPy+-modified clay: Effect of molecular structure on the adsorption. Journal of Molecular Structure, 1193, 522-531.
  • [6] Errais, E., Duplay, J., Elhabiri, M., Khodja, M., Ocampo, R., Baltenweck-Guyot, R., Darragi,F., (2012). Anionic RR120 dye adsorption onto raw clay: Surface properties and adsorption mechanism. Colloid sand Surfaces A: Physicochem. Eng. Aspects, 403, 69–78. [7] Ling Y.,, Klemes, M.J., Xiao, L., Alsbaiee, A., Dichtel, W.R., Helbling, D.E., (2017). Benchmarking micropollutant removal by activated carbon and porous beta-cyclodextrin polymers under environmentally relevant scenarios. Environ. Sci. Technol., 51, 7590–7598.
  • [8] Xiao, L., Ling, Y., Alsbaiee, A., Li C.,, Helbling, D.E., Dichtel, W.R., (2017). Beta-cyclodextrin polymer network sequesters perfluorooctanoic acid at environmentally relevant concentrations. J. Am. Chem. Soc., 139, 7689–7692.
  • [9] Chen, L.F., Shen, Q, Shen, J.-P., Shi, D.T., Chen, T., Yu H.R., (2012). Studies and comparison of the liquid adsorption and surface properties ofα, β and δ-cyclodextrins by FTIR and capillary rise method. Colloids and Surfaces A: Physicochem. Eng. Aspects, 411, 69–73.
  • [10] Jiang, H.L., Xu, M.Y., Xie, Z.W., Hai, W., Xie, X. L., He, F.A., (2019, online). Selective adsorption of anionic dyes from aqueous solution by a novelb-cyclodextrin-based polymer. Journal of Molecular Structure, xxx, xxx .
  • [11] Pentrák, M., Hronský, V., Pálková, H., Uhlík, P., Komade, P., Madejová, J., (2018). Alteration offine fraction of bentonite from Kopernica (Slovakia) under acidtreatment: A combined XRD, FTIR, MAS NMR and AES study. Applied Clay Science, 163, 204–213.
  • [12] Sharma, G., Bhogal, S., Gupta, V.K., Agarwal, S., Kumar, A., Pathania, D., Mola, G.T., Florian, J., (2019) Stadle. Algal biochar reinforced trimetallic nanocomposite as adsorptional/photocatalyst for remediation of malachite green from aqueous medium. Journal of Molecular Liquids, 275, 499–509.
  • [13] Dahri, M.K., Kooh, M. R. R., Linda, B.L.L, (2015). Application of Casuarina equisetif olianeedle for the removal of methylene blue and malachite green dyesfrom aqueous solution. Alexandria University Journal, 54, 1253-63.
  • [14] Chanzu, H.A., Onyari, J.M., Shiundu, P.M., (2019). Brewers’spent grain in adsorption of aqueous Congo Red and malachiteGreen dyes: Batch and continuousflow systems. Journal of Hazardous Materials, 380, 1208972.
  • [15] Baran M. F., Duz, M. Z., (2019). Removal of cadmium (II) in the aqueous solutions by biosorption of Bacillus licheniformis isolated from soil in the area of Tigris River. International Journal of Environmental Analytical Chemistry, 6, 96-103.
  • [16] Saeed, M., Munir, M., Nafees, M., Shah, S. S. A., Ullah, H., Waseem, A., (2020). Synthesis, characterization and applications of silylation based grafted bentonites for the removal of Sudan dyes: Isothermal, kinetic and thermodynamic studies. Microporous and Mesoporous Materials, 291, 109697.
  • [17] Rajabi, M., Mahanpoor, K., Moradi, O., (2019). Preparation of PMMA/GO and PMMA /GO-Fe3O4 nanocomposites or malachite green dye adsorption: Kinetic and thermodynamic studies. Composites Part B, 167, 544–555.
  • [18] Yildirim, A., Bulut, Y., (2019, online). Adsorption behaviors of malachite green by using crosslinkedchitosan/polyacrylic acid/bentonite composites with different ratios. Environmental Technology & Innovation, xxx, xxx.
Year 2020, , 1205 - 1212, 30.09.2020
https://doi.org/10.24012/dumf.665705

Abstract

References

  • [1] Baran, F., Duz, Z., Uzan, S., Dolak, İ., Celik, S., Kilinc E., (2018). Removal of Hg(II) from Aqueous Solution by Bacillus subtilis ATCC 6051 (B1). Journal of Bioprocessing & Biotechniques, 8, 4, 1-7.
  • [2] Hanafy, H., Sellaoui, L., Thue, P. S., Lima, E. C., Dotto, G. L., Alharbi, T., Belmabrouk, H., Bonilla-Petriciolet, A., Lamin A. B., (2019, online). Statistical physics modeling and interpretation of the adsorption of dyeremazol black B on natural and carbonized biomasses. Journal of Molecular Liquids, xxx, xxx.
  • [3] Jawad, A. H., Mubarak, N. S. A., Abdulhameed A. S., (2019, online). Tunable Schiff’s base-cross-linked chitosan composite for the removal ofreactive red 120 dye: Adsorption and mechanism study. International Journal of Biological Macromolecules, xxx (xxxx) xxx.
  • [4] Baran, M. F., Duz, Z., (2019). Biosorption of Pb2+ from aqueous solutions by Bacillus licheniformis isolated from Tigris river with a comparative study. International Journal of Latest Engineering and Management Research, 4, 5, 108-121. [5] Gamoudi, S., Srasra E., (2019). Adsorption of organic dyes by HDPy+-modified clay: Effect of molecular structure on the adsorption. Journal of Molecular Structure, 1193, 522-531.
  • [6] Errais, E., Duplay, J., Elhabiri, M., Khodja, M., Ocampo, R., Baltenweck-Guyot, R., Darragi,F., (2012). Anionic RR120 dye adsorption onto raw clay: Surface properties and adsorption mechanism. Colloid sand Surfaces A: Physicochem. Eng. Aspects, 403, 69–78. [7] Ling Y.,, Klemes, M.J., Xiao, L., Alsbaiee, A., Dichtel, W.R., Helbling, D.E., (2017). Benchmarking micropollutant removal by activated carbon and porous beta-cyclodextrin polymers under environmentally relevant scenarios. Environ. Sci. Technol., 51, 7590–7598.
  • [8] Xiao, L., Ling, Y., Alsbaiee, A., Li C.,, Helbling, D.E., Dichtel, W.R., (2017). Beta-cyclodextrin polymer network sequesters perfluorooctanoic acid at environmentally relevant concentrations. J. Am. Chem. Soc., 139, 7689–7692.
  • [9] Chen, L.F., Shen, Q, Shen, J.-P., Shi, D.T., Chen, T., Yu H.R., (2012). Studies and comparison of the liquid adsorption and surface properties ofα, β and δ-cyclodextrins by FTIR and capillary rise method. Colloids and Surfaces A: Physicochem. Eng. Aspects, 411, 69–73.
  • [10] Jiang, H.L., Xu, M.Y., Xie, Z.W., Hai, W., Xie, X. L., He, F.A., (2019, online). Selective adsorption of anionic dyes from aqueous solution by a novelb-cyclodextrin-based polymer. Journal of Molecular Structure, xxx, xxx .
  • [11] Pentrák, M., Hronský, V., Pálková, H., Uhlík, P., Komade, P., Madejová, J., (2018). Alteration offine fraction of bentonite from Kopernica (Slovakia) under acidtreatment: A combined XRD, FTIR, MAS NMR and AES study. Applied Clay Science, 163, 204–213.
  • [12] Sharma, G., Bhogal, S., Gupta, V.K., Agarwal, S., Kumar, A., Pathania, D., Mola, G.T., Florian, J., (2019) Stadle. Algal biochar reinforced trimetallic nanocomposite as adsorptional/photocatalyst for remediation of malachite green from aqueous medium. Journal of Molecular Liquids, 275, 499–509.
  • [13] Dahri, M.K., Kooh, M. R. R., Linda, B.L.L, (2015). Application of Casuarina equisetif olianeedle for the removal of methylene blue and malachite green dyesfrom aqueous solution. Alexandria University Journal, 54, 1253-63.
  • [14] Chanzu, H.A., Onyari, J.M., Shiundu, P.M., (2019). Brewers’spent grain in adsorption of aqueous Congo Red and malachiteGreen dyes: Batch and continuousflow systems. Journal of Hazardous Materials, 380, 1208972.
  • [15] Baran M. F., Duz, M. Z., (2019). Removal of cadmium (II) in the aqueous solutions by biosorption of Bacillus licheniformis isolated from soil in the area of Tigris River. International Journal of Environmental Analytical Chemistry, 6, 96-103.
  • [16] Saeed, M., Munir, M., Nafees, M., Shah, S. S. A., Ullah, H., Waseem, A., (2020). Synthesis, characterization and applications of silylation based grafted bentonites for the removal of Sudan dyes: Isothermal, kinetic and thermodynamic studies. Microporous and Mesoporous Materials, 291, 109697.
  • [17] Rajabi, M., Mahanpoor, K., Moradi, O., (2019). Preparation of PMMA/GO and PMMA /GO-Fe3O4 nanocomposites or malachite green dye adsorption: Kinetic and thermodynamic studies. Composites Part B, 167, 544–555.
  • [18] Yildirim, A., Bulut, Y., (2019, online). Adsorption behaviors of malachite green by using crosslinkedchitosan/polyacrylic acid/bentonite composites with different ratios. Environmental Technology & Innovation, xxx, xxx.
There are 16 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Ayfer Yıldırım

Publication Date September 30, 2020
Submission Date December 26, 2019
Published in Issue Year 2020

Cite

IEEE A. Yıldırım, “Β-Siklodekstrin Bazlı Kompozitin Sentezi ve Katyonik Boya Gideriminde Kullanımı”, DÜMF MD, vol. 11, no. 3, pp. 1205–1212, 2020, doi: 10.24012/dumf.665705.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456