Research Article
BibTex RIS Cite

Sıra-Bağımlı Hazırlık Zamanlı Genel Montaj Hattı Dengeleme Problemlerinin Çözümü İçin Bir Diferansiyel Gelişim Algoritması

Year 2020, , 1103 - 1118, 30.09.2020
https://doi.org/10.24012/dumf.694846

Abstract

Basit Montaj Hattı Dengeleme Problemleri (BMHDP) ile ilgili literatürde birçok çalışma yapılmıştır. Ancak BMHDP’de bulunan kısıtlardan dolayı yapılan akademik çalışmalar ve endüstrideki uygulamalar arasında büyük bir boşluk bulunmaktaydı. Bu boşluğun kapatılması için Genel Montaj Hattı Dengeleme Problemleri (GMHDP) adı altında daha çok endüstrinin pratik sorunlarını çözmeye yönelik çalışmalar başlamıştır. Otomotiv ve elektronik sektöründe sıkça rastlanan sıra-bağımlı hazırlık zamanları, daha önce yapılan Montaj Hattı Dengeleme (MHD) çalışmalarında ele alınmamıştır. Daha önceleri, MHD çalışmalarında hazırlık zamanları, istasyon zamanlarına eklenerek problemler çözülüyordu. Bu yaklaşım sorunu çözmede yetersiz kaldığı için sıra-bağımlı hazırlık zamanlı GMHDP çalışmaları ortaya çıkmıştır. Sıra-bağımlı hazırlık zamanlı GMHDP, NP-zor yapıda ve çok karmaşık problemler olduğundan çözümü için lineer programlama ve dal-sınır algoritması gibi belirli (deterministik) yöntemler, makul zamanlarda çözüm üretememektedir. Bu çalışmada ise problemlerin çözümünde bir metasezgisel yöntem olan yeni bir Diferansiyel Gelişim Algoritması (DGA) geliştirilmiştir. Geliştirilen DGA’nın performansı literatürdeki test problemleri üzerinde denenmiş ve literatürde daha önce geliştirilmiş sezgisel yöntemlerden daha iyi sonuçlar vermiştir.

References

  • [1] Ağpak, K., Gökçen, H., Saray, N.N. Özel, S., (2002). Stokastik Görev Zamanlı Tek Modelli U Tipi Montaj Hattı Dengeleme Problemleri İçin Bir Sezgisel, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 17, 4, 115-124. [2] Becker, C., Scholl, A., (2006). A survey on problems and methods in generalized assembly line balancing, European Journal of Operational Research, 168, 3, 694-715.
  • [3] Andres, C., Miralles, C., Pastor, R., (2008). Balancing and Scheduling Tasks in Assembly Lines with Sequence-Dependent Setup Times, European Journal of Operational Research, 187, 3, 1212-1223.
  • [4] Özcan, U., Toklu, B.2010. Balancing Two-Sided Assembly Lines with Sequence-Dependent Setup Times, International Journal of Production Research, 48, 18, 5363-5383.
  • [5] Yolmeh, A., Kianfar, F., (2011). An Efficient Hybrid Genetic Algorithm to Solve Assembly Line Balancing Problem with Sequence-Dependent Setup Times, Computers & Industrial Engineering, 62, 4, 936–945.
  • [6] Seyed-Alagheband, S., Ghomi, S.M.T.F., Zandieh, M., (2011). A simulated annealing algorithm for balancing theassembly line type II problem with sequence-dependent setup times between tasks, International Journal of Production Research, 49, 805-825.
  • [7] Scholl, A., Boysen, N., Fliedner, M., (2013). The Assembly Line Balancing and Scheduling Problem with Sequence-Dependent Setup Times: Problem Extension, Model Formulation and Efficient Heuristics, OR Spectrum, 35, 1, 291-321.
  • [8] Hamta, N., Ghomi, S.M.T.F., Jolai, F., Shirazi, M. A., (2013). A Hybrid PSO Algorithm for a Multi-Objective Assembly Line Balancing Problem with Flexible Operation Times, Sequence-Dependent Setup Times and Learning Effect, International Journal of Production Economics, 141, 1, 99-111.
  • [9] Akpınar, Ş., Bayhan, G.M., Baykasoğlu, A., (2013). Hybridizing Ant Colony Optimization via Genetic Algorithm for Mixed-Model Assembly Line Balancing Problem with Sequence Dependent Setup Times between Tasks, Applied Soft Computing, 13, 1, 574-589.
  • [10] Diri, Z., Mete, S., Çil, Z.A., Ağpak, K., (2015). Stokastik Sıra-Bağımlı Hazırlık Zamanlı Montaj Hattı Dengeleme Problemi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 21, 4, 152-157.
  • [11] Janardhanan, M.N., Li, Z., Bocewicz, G., Banaszak, Z, Nielsen, P., (2018). Metaheuristic algorithms for balancing robotic assembly lines with sequence-dependent robot setup times, Applied Mathematical Modelling.
  • [12] Gutjahr, A.L., Nemhauser, G.L., (1964). An algorithm for the line balancing problem, Management Science, 11, 2, 308–315.
  • [13] Storn, R., Price, K., (1997). Differential evolution-A simple and efficient heuristic for global optimization over continues spaces, Journal Global Optimization, 11, 241–354.
  • [14] Cheng, S.L., Hwang, C., (2001). Optimal approximation of linear systems by a differential evolution algorithm, IEEE Transactions on Systems, Man, and Cybernetics-Part A, Systems and Humans, 31, 6, 698–707.
  • [15] Ali, M.M., Torn, A., (2004). Population set-based global optimization algorithms: Some modifications and numerical studies, Computers and Operations Research, 31, 1703–1725.
  • [16] Kaelo, P., Ali, M.M., (2005). A numerical study of some modified differential evolution algorithms, European Journal of Operational Research, 169, 1176–84.
  • [17] Sun, J., Zhang, Q., Tsang. E. P. K., (2005). DE/EDA: A new evolutionary algorithm for global optimization, Information Sciences, 169, 3, 249–262.
  • [18] Montes, M. E., Miranda-Varela, M. E., del Carmen Gomez-Ramon, R., (2010). Differential evolution in constrained numerical optimization: An empirical study, Information Sciences, 180, 22, 4223–4262.
  • [19] Nearchou, A. C., (2007). Balancing large assembly lines by a new heuristic based on differential evolution method, International Journal of Advanced Manufacturing Technology, 34, 1016–1029.
  • [20] Nearchou, A. C. (2008). Multi-objective balancing of assembly lines by population heuristics, International Journal of Production Research, 46, 8, 2275–2297.
  • [21] Kim, Y. K., Kim, Y. J., Kim. Y., (1996). Genetic algorithms for assembly line balancing with various objectives, Computers Industrial Engineering, 30, 3, 397–409.
  • [22] Nourmohammadi, A., Zandieh, M., (2011). Assembly line balancing by a new multiobjective differential evolution algorithm based on TOPSIS, International Journal of Production Research, 49, 10, 2833–2855.
  • [23] Mozdgir, A., Mahdavi, I., Seyedi Badeleh, I., Solimanpur, M., (2013). Using the Taguchi method to optimize the differential evolution algorithm parameters for minimizing the workload smoothness index in simple assembly line balancing, Mathematical and Computer Modelling, 57, 1–2, 137–151.
  • [24] Vincent, L. W. H., Ponnambalam, S. G., (2013). A differential evolution-based algorithm to schedule flexible assembly lines, IEEE Transactıons On Automatıon Scıence And Engıneerıng, 10, 4, 1161-1165.
  • [25] Pitakaso, P., Sethanan, K., (2015). Differential Modified differential evolution algorithm for simple assembly line balancing with a limit on the number of machine types, Engineering Optimization.
  • [26] Nilakantan, J. M., Nielsen, I., Ponnambalam, S. G., Venkataramanaiah, S., (2016). Differential evolution algorithm for solving RALB problem using cost- and time-based models, The International Journal of Advanced Manufacturing Technology, 89, 1, 311-332.
  • [27] Zhang, H., Yan, Q., Liu, Y., Jiang, Z., (2016). An integer-coded differential evolution algorithm for simple assembly line balancing problem of type 2, Assembly Automation, 36, 3.
  • [28] Nearchou, A.C., Omirou, S.L., (2017). Assembly Line Balancing Using Differential Evolution Models, Cybernetics and Systems.
  • [29] Gangsterer, M., Hartl, R. F., (2017). One- and two-sided assembly line balancing problems with real-world constraints, International Journal of Production Research, 3025-3042.
  • [30] Özçelik, F., (2018). Basit düz ve U-tipi montaj hattı dengeleme problemleri için diferansiyel evrim algoritması, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24, 1.
  • [31] Becker, C., Scholl, A., (2009). Balancing assembly lines with variable parallel workplaces: Problem definition and effective solution procedure. European Journal of Operational Research, 199, 359–374.
  • [32] Nearchou, A. C., (2006). Meta-heuristics from Nature for the Loop Layout Design Problem, International Journal of Production Economics, 101, 2, 312–328.
Year 2020, , 1103 - 1118, 30.09.2020
https://doi.org/10.24012/dumf.694846

Abstract

References

  • [1] Ağpak, K., Gökçen, H., Saray, N.N. Özel, S., (2002). Stokastik Görev Zamanlı Tek Modelli U Tipi Montaj Hattı Dengeleme Problemleri İçin Bir Sezgisel, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 17, 4, 115-124. [2] Becker, C., Scholl, A., (2006). A survey on problems and methods in generalized assembly line balancing, European Journal of Operational Research, 168, 3, 694-715.
  • [3] Andres, C., Miralles, C., Pastor, R., (2008). Balancing and Scheduling Tasks in Assembly Lines with Sequence-Dependent Setup Times, European Journal of Operational Research, 187, 3, 1212-1223.
  • [4] Özcan, U., Toklu, B.2010. Balancing Two-Sided Assembly Lines with Sequence-Dependent Setup Times, International Journal of Production Research, 48, 18, 5363-5383.
  • [5] Yolmeh, A., Kianfar, F., (2011). An Efficient Hybrid Genetic Algorithm to Solve Assembly Line Balancing Problem with Sequence-Dependent Setup Times, Computers & Industrial Engineering, 62, 4, 936–945.
  • [6] Seyed-Alagheband, S., Ghomi, S.M.T.F., Zandieh, M., (2011). A simulated annealing algorithm for balancing theassembly line type II problem with sequence-dependent setup times between tasks, International Journal of Production Research, 49, 805-825.
  • [7] Scholl, A., Boysen, N., Fliedner, M., (2013). The Assembly Line Balancing and Scheduling Problem with Sequence-Dependent Setup Times: Problem Extension, Model Formulation and Efficient Heuristics, OR Spectrum, 35, 1, 291-321.
  • [8] Hamta, N., Ghomi, S.M.T.F., Jolai, F., Shirazi, M. A., (2013). A Hybrid PSO Algorithm for a Multi-Objective Assembly Line Balancing Problem with Flexible Operation Times, Sequence-Dependent Setup Times and Learning Effect, International Journal of Production Economics, 141, 1, 99-111.
  • [9] Akpınar, Ş., Bayhan, G.M., Baykasoğlu, A., (2013). Hybridizing Ant Colony Optimization via Genetic Algorithm for Mixed-Model Assembly Line Balancing Problem with Sequence Dependent Setup Times between Tasks, Applied Soft Computing, 13, 1, 574-589.
  • [10] Diri, Z., Mete, S., Çil, Z.A., Ağpak, K., (2015). Stokastik Sıra-Bağımlı Hazırlık Zamanlı Montaj Hattı Dengeleme Problemi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 21, 4, 152-157.
  • [11] Janardhanan, M.N., Li, Z., Bocewicz, G., Banaszak, Z, Nielsen, P., (2018). Metaheuristic algorithms for balancing robotic assembly lines with sequence-dependent robot setup times, Applied Mathematical Modelling.
  • [12] Gutjahr, A.L., Nemhauser, G.L., (1964). An algorithm for the line balancing problem, Management Science, 11, 2, 308–315.
  • [13] Storn, R., Price, K., (1997). Differential evolution-A simple and efficient heuristic for global optimization over continues spaces, Journal Global Optimization, 11, 241–354.
  • [14] Cheng, S.L., Hwang, C., (2001). Optimal approximation of linear systems by a differential evolution algorithm, IEEE Transactions on Systems, Man, and Cybernetics-Part A, Systems and Humans, 31, 6, 698–707.
  • [15] Ali, M.M., Torn, A., (2004). Population set-based global optimization algorithms: Some modifications and numerical studies, Computers and Operations Research, 31, 1703–1725.
  • [16] Kaelo, P., Ali, M.M., (2005). A numerical study of some modified differential evolution algorithms, European Journal of Operational Research, 169, 1176–84.
  • [17] Sun, J., Zhang, Q., Tsang. E. P. K., (2005). DE/EDA: A new evolutionary algorithm for global optimization, Information Sciences, 169, 3, 249–262.
  • [18] Montes, M. E., Miranda-Varela, M. E., del Carmen Gomez-Ramon, R., (2010). Differential evolution in constrained numerical optimization: An empirical study, Information Sciences, 180, 22, 4223–4262.
  • [19] Nearchou, A. C., (2007). Balancing large assembly lines by a new heuristic based on differential evolution method, International Journal of Advanced Manufacturing Technology, 34, 1016–1029.
  • [20] Nearchou, A. C. (2008). Multi-objective balancing of assembly lines by population heuristics, International Journal of Production Research, 46, 8, 2275–2297.
  • [21] Kim, Y. K., Kim, Y. J., Kim. Y., (1996). Genetic algorithms for assembly line balancing with various objectives, Computers Industrial Engineering, 30, 3, 397–409.
  • [22] Nourmohammadi, A., Zandieh, M., (2011). Assembly line balancing by a new multiobjective differential evolution algorithm based on TOPSIS, International Journal of Production Research, 49, 10, 2833–2855.
  • [23] Mozdgir, A., Mahdavi, I., Seyedi Badeleh, I., Solimanpur, M., (2013). Using the Taguchi method to optimize the differential evolution algorithm parameters for minimizing the workload smoothness index in simple assembly line balancing, Mathematical and Computer Modelling, 57, 1–2, 137–151.
  • [24] Vincent, L. W. H., Ponnambalam, S. G., (2013). A differential evolution-based algorithm to schedule flexible assembly lines, IEEE Transactıons On Automatıon Scıence And Engıneerıng, 10, 4, 1161-1165.
  • [25] Pitakaso, P., Sethanan, K., (2015). Differential Modified differential evolution algorithm for simple assembly line balancing with a limit on the number of machine types, Engineering Optimization.
  • [26] Nilakantan, J. M., Nielsen, I., Ponnambalam, S. G., Venkataramanaiah, S., (2016). Differential evolution algorithm for solving RALB problem using cost- and time-based models, The International Journal of Advanced Manufacturing Technology, 89, 1, 311-332.
  • [27] Zhang, H., Yan, Q., Liu, Y., Jiang, Z., (2016). An integer-coded differential evolution algorithm for simple assembly line balancing problem of type 2, Assembly Automation, 36, 3.
  • [28] Nearchou, A.C., Omirou, S.L., (2017). Assembly Line Balancing Using Differential Evolution Models, Cybernetics and Systems.
  • [29] Gangsterer, M., Hartl, R. F., (2017). One- and two-sided assembly line balancing problems with real-world constraints, International Journal of Production Research, 3025-3042.
  • [30] Özçelik, F., (2018). Basit düz ve U-tipi montaj hattı dengeleme problemleri için diferansiyel evrim algoritması, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24, 1.
  • [31] Becker, C., Scholl, A., (2009). Balancing assembly lines with variable parallel workplaces: Problem definition and effective solution procedure. European Journal of Operational Research, 199, 359–374.
  • [32] Nearchou, A. C., (2006). Meta-heuristics from Nature for the Loop Layout Design Problem, International Journal of Production Economics, 101, 2, 312–328.
There are 31 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Sehmus Aslan 0000-0003-1886-3421

Mehmet Aytekin 0000-0001-5464-0677

Publication Date September 30, 2020
Submission Date February 26, 2020
Published in Issue Year 2020

Cite

IEEE S. Aslan and M. Aytekin, “Sıra-Bağımlı Hazırlık Zamanlı Genel Montaj Hattı Dengeleme Problemlerinin Çözümü İçin Bir Diferansiyel Gelişim Algoritması”, DÜMF MD, vol. 11, no. 3, pp. 1103–1118, 2020, doi: 10.24012/dumf.694846.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456