Research Article
BibTex RIS Cite

Ti6Al4V Alaşımına Sol-Jel Yöntemi ile Yapılan Hidroksiapatit Kaplamalarda Dietanolaminin Kaplama Morfolojisine ve Korozyon Dayanımına Etkisi

Year 2020, , 1139 - 1147, 30.09.2020
https://doi.org/10.24012/dumf.710557

Abstract

Titanyum ve alaşımları, mekanik dayanımları ve biyotolerant yapıda olmaları nedeni ile biyomalzeme uygulamalarında tercih edilirler. Fakat insan vücudu içinde korozyona uğraması durumunda zararlı iyonların salınımına neden olabilirler. Hidroksiapatit ise seramik ve biyoaktif yapıda bir malzeme olup biyomalzemelerin korozyon dayanımlarını arttırmaya yönelik kaplama tabakası olarak kullanımı da mevcuttur. Bu çalışmada Ti6Al4V alaşımının korozyon dayanımını geliştirmek amacı ile sol-jel yöntemi kullanılarak hidroksiapatit kaplamalar yapılmıştır. Hazırlanan hidroksiapatit solüsyonlarına farklı oranlarda dietanolamin (DEA, C4H11NO2) eklenerek sol-jel prosesinde oluşması muhtemel olan çatlaklı yapılar kontrol edilmiş ve azaltılmaya çalışılmış ve kaplamanın genel morfolojisinde ve korozyon dayanımında meydana gelen değişikliklerin gözlemlenmesi amaçlanmıştır. Numuneler taramalı elektron mikroskobu (SEM-EDS) ve X-Işını kırınımı (XRD) kullanılarak analiz edilmiştir. Hazırlanan yapay vücut sıvısı içinde elektrokimyasal-potansiyodinamik korozyon testleri gerçekleştirilmiştir. Çalışmanın sonucunda DEA katkı oranının artması ile morfolojide çatlaklı yapıların azaldığı ve kaplama kalınlığının arttığı gözlemlenmiştir. DEA eklenmesinin korozyon dayanımını arttırdığı fakat DEA miktarındaki artışın korozyon dayanımını negatif etkilediği görülmüştür.

Supporting Institution

Manisa Celal Bayar Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

2018-096

Thanks

Bu çalışma MCBÜ Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından 2018-096 no’lu proje ile desteklenmiştir. Yazarlar finansal destek için MCBÜ Bilimsel Araştırma Projeleri Koordinasyon Birimi’ne teşekkür ederler.

References

  • [1] Li, Q., Yang, W., Liu, C., Wang, D., Liang, J., (2017). Correlations between the growth mechanism and properties of micro-arc oxidation coatings on titanium alloy: Effects of electrolytes. Surface & Coatings Technology, 316, 162-170.
  • [2] Miranda G., Sousa, F., Costa, M. M., Bartolomeu, F., Silva, F. S., Carvalho, O., (2019). Surface design using laser technology for Ti6Al4V-hydroxyapatite implants. Optics & Laser Technology, 109, 488-495.
  • [3] Liu, X., Chu, P. K., Ding, C., (2004). Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Materials Science and Engineering: R, Reports, 47, 49-121.
  • [4] Yılmaz, B., Evis, Z., (2014). Titanyum Alaşımının Selenat Eklenmiş Hidroksiapatit ile Kaplanması. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 14, 335-339.
  • [5] Lugovskoy, A., Lugovskoy, S., (2014). Production of hydroxyapatite layers on the plasma electrolytically oxidized surface of titanium alloys, Materilas Science and Engineering: C, 43, 527-532.
  • [6] He, D., Du, J., Liu, P., Liu, X., Chen, X., Li, W., Zhang, K., Ma, F., (2019). Influence of EDTA-2Na on the hydroxyapatite coating deposited by hydrothermal-electrochemical method on Ti6Al4V surface, Surface and Coatings Technology, 365, 242-247.
  • [7] Huang, H., Lan, P.-H., Zhang, Y.-Q., Li, X.-K., Zhang, X., Yuan, C. F, Zheng, X. B., Guo, Z., (2015). Surface characterization and in vivo performance of plasma-sprayed hydroxyapatite-coated porous Ti6Al4V implants generated by electron beam melting, Surface and Coatings Technology, 283, 80-88.
  • [8] Garcia-Casas, A., Aguilera-Correa, J. J., Mediero, A., Esteban, J., Jimenez-Morales, A., (2019). Functionalization of sol-gel coatings with organophosphorus compounds for prosthetic devices, Colloids and Surfaces B: Biointerfaces, 181, 973-980.
  • [9] Ayday, A., (2018). Mikro Ark oksidasyon işlemi ile kaplanan Ti6Al4V alaşımının yüzey karakterizasyonu ve korozyon özelliklerinin incelenmesi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22, 2, 243-247.
  • [10] Ke, D., Vu, A. A., Bandyopadhyay, A., Bose, S., (2019). Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants, Acta Biomaterialia, 84, 414-423.
  • [11] Pawlik, A., Ur Rehman, M. A., Nawaz, Q., Bastan, F. E., Sulka, G. D., Boccaccini, A. R., (2019). Fabrication and characterization of electrophoretically deposited chitosan-hydroxyapatite composite coatings on anodic titanium dioxide layers, Electrochemica Acta, 307, 465-473.
  • [12] Ban, S., Hasegava, J., (2002). Morphological regulation and crystal growth of hydrothermal-electrochemically deposited apatite, Biomaterials, 23, 14, 2965-2972.
  • [13] Toygun, Ş., Köneçoğlu, G., Kalpaklı, Y., (2013). General Principles of sol-gel, Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi, 31, 456-476.
  • [14] Batebi, K., Abbasi Khazaei, B., Afshar, A., (2018). Characterization of sol-gel derived silver/flour-hydroxyapatite composite coatings on titanium substrate, Surface and Coatings Technology, 352, 522-528.
  • [15] Nikolić, L., Radonjić, L., (1994). Effect of drying control chemical additives in Sol-Gel-Glass Monolith processing. Ceramics International, 20, 5, 309–313.
  • [16] Uchida, N., Ishiyama, N., Kato, Z., Uematsu, K., (1994). Chemical effects of DCCA to the sol-gel reaction process. Journal of Materials Science, 29, 19, 5188–5192.
  • [17] Robertson, S. F., Bandyopadhyay, A., Bose, S., (2019). Titania nanotube interface to increase adhesion strength of hydroxyapatite sol-gel coatings on Ti-6Al-4V, Surface and Coatings Technology, 372, 140-147.
  • [18] Haddow, D. B., Kothari, S., James, P. F., Short, R. D., Hatton, P. V., van Noort, R., (1996). The formation and characterization of sol-gel titania films, Biomaterials, 17, 501-507.
  • [19] Wang, D., Bierwagen, G., (2009). Sol-gel coatings on metals for corrosion protection, Progress in Organic Coatings, 64, 4, 327-338.
  • [20] Pasinli, A., Yuksel, M., Celik, E., Sener, S., Tas, A. C., (2010). A new approach in biomimetic synthesis of calcium phosphate coatings using lactic acid-Na lactate buffered body fluid solution. Acta Biomaterialia, 6, 6, 2282-2288.
  • [21] Arafat, M. M., Haseeb, A. S. M. A., Akbar, S. A., (2015). Growth and characterization of the oxide scales and core/shell nanowires on Ti-6Al-4V particles during thermal oxidation, Ceramics International, 41, 3, 4401-4409.
  • [22] Anjaneyulu, U., Priyadarshini, B., Arul Xavier Stango, S., Chellappa, M., Geetha, M. Vijayalakshmi, U., (2017). Preparation and characterisation of sol–gel-derived hydroxyapatite nanoparticles and its coatings on medical grade Ti-6Al-4V alloy for biomedical applications, Materials Technology, 32, 13, 800-814.
  • [23] McCafferty, E., (2010) Introduction to Corrosion Science, Virginia, Springer Press

Effect of Dietanolamine on Coating Morphology and Corrosion Resistance in Hydroxyapatite Coatings Made by Sol-Gel Method on Ti6Al4V Alloy

Year 2020, , 1139 - 1147, 30.09.2020
https://doi.org/10.24012/dumf.710557

Abstract

Titanium and its alloys are preferred in biomaterial applications due to
their mechanical strength and biotolerant structure. However, if they are
corroded in the human body, they can cause the release of harmful ions.
Hydroxyapatite is a ceramic and bioactive material, and it is also used as a
coating layer for increasing the corrosion resistance of biomaterials. In this
study, hydroxyapatite coatings were made using sol-gel method in order to
improve the corrosion resistance of Ti6Al4V alloy. By adding different ratios
of diethanolamine (DEA, C4H11NO2) to the
prepared hydroxyapatite solutions, cracked structures that are likely to occur
in the sol-gel process have been checked and tried to be reduced. It has been
aimed to observe the changes in the overall morphology and corrosion resistance
of the coatings. Samples were analyzed using scanning electron microscopy (SEM-EDS)
and X-Ray diffraction (XRD). Electrochemical-potentiodynamic corrosion tests
were carried out in the prepared simulated body fluid. As a result of the
study, it was observed that the cracked structures and the coating thickness
increased in morphology with the increase in the DEA contribution rate. It was
seen that the addition of DEA increases the corrosion resistance, but the
increase in the amount of DEA negatively affects the corrosion resistance.

Project Number

2018-096

References

  • [1] Li, Q., Yang, W., Liu, C., Wang, D., Liang, J., (2017). Correlations between the growth mechanism and properties of micro-arc oxidation coatings on titanium alloy: Effects of electrolytes. Surface & Coatings Technology, 316, 162-170.
  • [2] Miranda G., Sousa, F., Costa, M. M., Bartolomeu, F., Silva, F. S., Carvalho, O., (2019). Surface design using laser technology for Ti6Al4V-hydroxyapatite implants. Optics & Laser Technology, 109, 488-495.
  • [3] Liu, X., Chu, P. K., Ding, C., (2004). Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Materials Science and Engineering: R, Reports, 47, 49-121.
  • [4] Yılmaz, B., Evis, Z., (2014). Titanyum Alaşımının Selenat Eklenmiş Hidroksiapatit ile Kaplanması. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 14, 335-339.
  • [5] Lugovskoy, A., Lugovskoy, S., (2014). Production of hydroxyapatite layers on the plasma electrolytically oxidized surface of titanium alloys, Materilas Science and Engineering: C, 43, 527-532.
  • [6] He, D., Du, J., Liu, P., Liu, X., Chen, X., Li, W., Zhang, K., Ma, F., (2019). Influence of EDTA-2Na on the hydroxyapatite coating deposited by hydrothermal-electrochemical method on Ti6Al4V surface, Surface and Coatings Technology, 365, 242-247.
  • [7] Huang, H., Lan, P.-H., Zhang, Y.-Q., Li, X.-K., Zhang, X., Yuan, C. F, Zheng, X. B., Guo, Z., (2015). Surface characterization and in vivo performance of plasma-sprayed hydroxyapatite-coated porous Ti6Al4V implants generated by electron beam melting, Surface and Coatings Technology, 283, 80-88.
  • [8] Garcia-Casas, A., Aguilera-Correa, J. J., Mediero, A., Esteban, J., Jimenez-Morales, A., (2019). Functionalization of sol-gel coatings with organophosphorus compounds for prosthetic devices, Colloids and Surfaces B: Biointerfaces, 181, 973-980.
  • [9] Ayday, A., (2018). Mikro Ark oksidasyon işlemi ile kaplanan Ti6Al4V alaşımının yüzey karakterizasyonu ve korozyon özelliklerinin incelenmesi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22, 2, 243-247.
  • [10] Ke, D., Vu, A. A., Bandyopadhyay, A., Bose, S., (2019). Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants, Acta Biomaterialia, 84, 414-423.
  • [11] Pawlik, A., Ur Rehman, M. A., Nawaz, Q., Bastan, F. E., Sulka, G. D., Boccaccini, A. R., (2019). Fabrication and characterization of electrophoretically deposited chitosan-hydroxyapatite composite coatings on anodic titanium dioxide layers, Electrochemica Acta, 307, 465-473.
  • [12] Ban, S., Hasegava, J., (2002). Morphological regulation and crystal growth of hydrothermal-electrochemically deposited apatite, Biomaterials, 23, 14, 2965-2972.
  • [13] Toygun, Ş., Köneçoğlu, G., Kalpaklı, Y., (2013). General Principles of sol-gel, Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi, 31, 456-476.
  • [14] Batebi, K., Abbasi Khazaei, B., Afshar, A., (2018). Characterization of sol-gel derived silver/flour-hydroxyapatite composite coatings on titanium substrate, Surface and Coatings Technology, 352, 522-528.
  • [15] Nikolić, L., Radonjić, L., (1994). Effect of drying control chemical additives in Sol-Gel-Glass Monolith processing. Ceramics International, 20, 5, 309–313.
  • [16] Uchida, N., Ishiyama, N., Kato, Z., Uematsu, K., (1994). Chemical effects of DCCA to the sol-gel reaction process. Journal of Materials Science, 29, 19, 5188–5192.
  • [17] Robertson, S. F., Bandyopadhyay, A., Bose, S., (2019). Titania nanotube interface to increase adhesion strength of hydroxyapatite sol-gel coatings on Ti-6Al-4V, Surface and Coatings Technology, 372, 140-147.
  • [18] Haddow, D. B., Kothari, S., James, P. F., Short, R. D., Hatton, P. V., van Noort, R., (1996). The formation and characterization of sol-gel titania films, Biomaterials, 17, 501-507.
  • [19] Wang, D., Bierwagen, G., (2009). Sol-gel coatings on metals for corrosion protection, Progress in Organic Coatings, 64, 4, 327-338.
  • [20] Pasinli, A., Yuksel, M., Celik, E., Sener, S., Tas, A. C., (2010). A new approach in biomimetic synthesis of calcium phosphate coatings using lactic acid-Na lactate buffered body fluid solution. Acta Biomaterialia, 6, 6, 2282-2288.
  • [21] Arafat, M. M., Haseeb, A. S. M. A., Akbar, S. A., (2015). Growth and characterization of the oxide scales and core/shell nanowires on Ti-6Al-4V particles during thermal oxidation, Ceramics International, 41, 3, 4401-4409.
  • [22] Anjaneyulu, U., Priyadarshini, B., Arul Xavier Stango, S., Chellappa, M., Geetha, M. Vijayalakshmi, U., (2017). Preparation and characterisation of sol–gel-derived hydroxyapatite nanoparticles and its coatings on medical grade Ti-6Al-4V alloy for biomedical applications, Materials Technology, 32, 13, 800-814.
  • [23] McCafferty, E., (2010) Introduction to Corrosion Science, Virginia, Springer Press
There are 23 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Canser Gül 0000-0002-1339-936X

Serhat Mutaf 0000-0003-0502-7176

Hülya Durmuş 0000-0002-7270-562X

Project Number 2018-096
Publication Date September 30, 2020
Submission Date March 28, 2020
Published in Issue Year 2020

Cite

IEEE C. Gül, S. Mutaf, and H. Durmuş, “Ti6Al4V Alaşımına Sol-Jel Yöntemi ile Yapılan Hidroksiapatit Kaplamalarda Dietanolaminin Kaplama Morfolojisine ve Korozyon Dayanımına Etkisi”, DÜMF MD, vol. 11, no. 3, pp. 1139–1147, 2020, doi: 10.24012/dumf.710557.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456