Research Article
BibTex RIS Cite

Türkiye havzalarında sediment veriminin alansal değişimi

Year 2018, Volume: 9 Issue: 2, 963 - 973, 25.09.2018

Abstract

Su yapılarına ve/veya sulama tesislerine planlanan ömrü boyunca taşınan sediment miktarının bilinmesi büyük önem arz etmektedir. Taşınan sediment miktarı, söz konusu tesislerin projelendirilmesinde kullanılmakta ve böylece sedimentasyon zararlarının minimize edilmesi sağlanmaktadır. Sediment miktarı, iklim ve arazi kullanım ile birlikte yıldan yıla büyük ölçüde değişebilir. Bu nedenle, sediment miktarının tahmini, genellikle erozyon, sediment taşınımı ve biriktirme vb. süreçleri içeren karmaşık bir işlemdir. Akarsularda taşınan sedimentin %50-95’i genellikle süspanse sedimenttir. Dolayısıyla taşınan sedimentin miktarını belirlemek için, süspanse sediment konsantrasyonunun bilinmesine gerek vardır. Akarsularda taşınan sediment miktarının analitik olarak hesabı sürecin karmaşıklığı nedeniyle güçtür. Bu nedenle, sediment miktarının tahmininde analitik yöntemler yerine uzun süreli ölçüm sonuçlarından yararlanılması daha güvenli bir yol olmaktadır. Bu çalışmada, Devlet Su İşlerinden temin edilen uzun süreli süspanse sediment ölçümleri kullanılarak, sediment veriminin alansal değişiminin elde edilmesi amaçlanmıştır. Çalışmada, 15 yıldan daha fazla verisi bulunan 114 gözlem istasyonundan elde edilen süspanse sediment verisinden yararlanılmıştır. Sediment miktarının debi ile olan ilişkisi bilindiğinden, debi ikincil veri olarak alınarak Co-kriging yöntemiyle sediment verimi haritalanmıştır. Sediment veriminin alansal değişimini veren harita, kalibrasyon ve validasyon aşamalarıyla değerlendirilmiş ve tatminkâr sonuçlar elde edilmiştir. Haritanın validasyonu, kalibrasyon aşamasında kullanılmayan 15 adet gözlem istasyonunun verisi kullanılarak gerçekleştirilmiştir. Bu 15 adet istasyona ait ölçüm ve oluşturulan haritadan çıkarılan tahmin sonuçlarına göre korelasyon katsayısı yaklaşık 0.87 olarak bulunmuştur. Oluşturulan harita yardımıyla, süspanse sediment ölçümü bulunmayan bir noktada sediment verimi tahmin edilebilecektir.

References

  • Aksu, N. ve Uçan, K. (2012). Hurman Çayı havzasında ölçülen ve ampirik yöntemlerle hesaplanan sediment verimlerinin karşılaştırılması, KSU Doğa Bil. Dergisi, 15(3), 1-8.
  • Arekhi, S., Shabani, A. ve Alavipanah, S.K. (2011). Evaluation of integrated KW-GIUH and MUSLE models to predict sediment yield using Geographic Information System (GIS) (Case Study: Kengir Watershed, Iran), African Journal of Agricultural Research, 6(18), 4185-4198.
  • Arekhi, S. (2008). Evaluating long-term annual sediment yield estimating potential of GIS interfaced MUSLE model on two micro-watersheds, Pak J. Biol. Sci., 1(2), 270-4.
  • Aybaş, M.C. (1976). Beytepe Kompleks Havzasında Sediment Verimi Araştırması, Ankara, (Basılmamış).
  • Bathurst, J.C., Kilsby, C.G. ve White, S.M. (1996). Modelling the impacts of climate and land use change on basin hydrology and soil erosion in Mediterranean Europe in Thornes J.B. ve Brandt C.J. , eds, Mediterranean Desertification and Land Use,. Wiley, 355–387.
  • Birkinshaw, S.J. ve Bathurst, J.C. (2006). Model study of the relationship between sediment yield and river basin area, Earth Surface Processes and Landforms, 31(6), 750- 761
  • Blaszczynski, J. (2003). Estimating watershed runoff and sediment yield using a GIS interface to curve number and MUSLE models, Soils and Geology, Resources Notes, 66.
  • Buendia, C., Herrero, A., Sabater, S. ve Batalla, R.J. (2016). An appraisal of the sediment yield in western Mediterranean river basins, Science of the Total Environment, 572, 538–553.
  • Bussi, G., Rodriguez-Lloveras, X., Frances, F., Benito, G., Sanchez-Moya, Y. ve Sopena, A. (2013). Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment, Hydrology and Earth System Sciences, 17, 3339–3354.
  • Carter, J., Owens, P.N., Walling, D.E. ve Leeks, G.J.L. (2003). Fingerprinting suspended sediment sources in a large urban river system, Science of the Total Environment, 314-316, 513–534.
  • Dedkov, A. (2004). The relationship between sediment yield and drainage basin area in Golosov, V., Belyaev, V. ve Walling, D.E., eds, Sediment Transfer through the Fluvial System, IAHS Publication 288, 197-204, Wallingford, Oxon, UK.
  • Demirkıran, O. (2007). Ankara Yenimahalle Güvenç Gölet Havzası sediment verimi, Toprak Gübre ve Su Kaynakları Merkez Araştırma Enstitüsü Müdürlüğü Ankara, Proje No: TAGEM-BBTOPRAKSU- 2007/48.
  • de Vente, J. ve Poesen, J. (2005). Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative models, Earth-Science Reviews, 71, 95–125
  • Erksine, W.D., Mahmoudzadeh, A. ve Myers, C. (2002). Land Use Effects on Sediment Yields and Soil Loss Rates in Small Basins of Triassic Sandstone Near, Catena, 49, 271-287.
  • Fournier, F. (1960). Climat et Erosion, 201, P.U.F., Paris.
  • Garcia-Ruiz, J.M., Lasanta, T., Marti, C., Gonzalez, C., White, S.M., Ortigosa, L. ve Ruiz Flano P. (1995). Changes in runoff and erosion as a consequence of land-use changes in the central Spanish Pyrenees, Physics and Chemistry of the Earth, 20, 301–307.
  • Goksu, E., Uygun, İ., Alışık, A. ve Barlas, S. (1979). Türkiye akarsularında sediment verimi ve sediment taşıma miktarları ile havza parametreleri arasındaki ilişkiler, Bildiriler, I.Ulusal Hidroloji Kongresi, İTÜ, İstanbul.
  • Grauso, S., Fattoruso, G., Crocetti, C. ve Montanari, A. (2008). Estimating the suspended sediment yield in a river network by means of geomorphic parameters and regression relationships, Hydrology and Earth System Sciences, 12, 177-191.
  • Gruszowski, K.E., Foster, I.D.L., Les, J.A. ve Charlesworth, S.M. (2003). Sediment sources and transport pathways in a rural catchment, Herefordshire, UK, Hydrological Processes, 17, 2665–2681.
  • Harden, C.P. (1993). Land-use, soil-erosion and reservoir sedimentation in an Andean drainage-basin in Ecuador, Mountain Research and Development, 13, 177–184.
  • İrvem, A. ve Tülücü, K. (2004). Coğrafi bilgi sistemi ile toprak kaybı ve sediment verimi tahmin modelinin oluşturulması ve seyhan-körkün alt havzasına uygulanması, Çukurova Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13 (1).
  • Jackson, W.L., Gebhardt K. ve Van Haveren B.P. (1986). Use of modified universal soil loss equation for average annual sediment yield estimates on small rangeland drainage basins in R.F. Hadley, ed., Drainage basin sediment delivery, IAHS Publication 159, 413-422, Washington D.C.
  • Jakeman, A.J., Green, T.R., Beavis, S.G., Zhang, L., Dietrich, C.R. ve Crapper, P.F. (1999). Modelling upland and in-stream erosion, sediment and phosphorus transport in a large catchment, Hydrological Processes, 13(5), 745– 752.
  • Jansson, M.B. (1988). A Global Survey of Sediment Yield, Physical Geography, 70(1/2), 81-98.
  • Jinfa, L. ve Xiuhua, H. (2004). The relationship between sediment yield and catchment characteristics in the middle Yellow River basin of China in Golosov, V., Belyaev, V. ve Walling, D.E., eds, Sediment Transfer through the Fluvial System, IAHS Publication 288, 212–219, Wallingford, Oxon, UK.
  • Jiongxin, X, Yunxia, Y. (2005). Scale effects on specific sediment yield in the Yellow River basin and geomorphological explanations, Journal of Hydrology, 307, 219- 232.
  • Kraehmer, H., ed, (2016). Atlas of Weed Mapping, John Wiley and Sons. 488p.
  • Koç, G. (2014). Modifiye edilmiş üniversal toprak kayıpları eşitliği (MUSLE) kullanılarak Tarsus (Mersin)–Topçu Deresi alt havzasında erozyon potansiyelinin değerlendirilmesi, Yüksek Lisans Tezi, Hacettepe Üniversitesi Jeoloji Mühendisliği Anabilim Dalı, Ankara. Kuşvuran, K. (2011). Mersin – Tarsus Topçu Deresi Havzasında Yağış, Akım ve Alt Havzasında Sediment Veriminin Araştırılması, Tarımsal Araştırmalar Genel Müdürlüğü Toprak ve Su Kaynakları Tarsus Araştırma Enstitüsü, Proje No: TAGEM-BB-TOPRAKSU-2011/125.
  • Lu, X.X. ve Higgitt, D.L. (1998). Recent changes in sediment yield in the Upper Yangtze, China, Environmental Management, 22, 697–709.
  • Lu, X.X., Ashmore, P. ve Wang, J. (2003). Sediment yield mapping in a large river basin: the Upper Yangtze, China Environmental Modelling and Software, 18, 339–353.
  • Ludwig, W. ve Probst, J.L. (1998). River sediment discharge to the oceans: present-day controls and global budgets, American Journal of Science, 298, 265–295.
  • Miller, C.B. (1951). Analysis of flow–duration, sediment- rating curver method of computing sediment yield, U.S. Department of Interior, Bureau of Reclamation Sedimantation, Denver, Colorado.
  • Milliman, J.D. ve Meade, R.H. (1983). World-wide delivery of river sediment to the oceans, Journal of Geology, 91, 1–21 Neil, D.T., Mazari, R.K. (1993). “Sediment yield mapping using small dam sedimentation surveys, Southern Tablelands, New South Wales”, Catena, 20: 13–25.
  • Ozturk, F. (1996). Suspended sediment yields of rivers in Turkey in Walling, D.E. ve Webb, B.W., eds., Erosion and Sediment Yield: Global and Regional Perspectives (Proceedings of the Exeter Symposium, July 1996), IAHS Publ. no. 236, 65–71.
  • Oğuz, İ. ve Balcın, M. (2001). Artova Ekinli II Golet Havzası Sediment Verimi, Tokat Toprak ve Su Kaynakları Araştırma Enstitüsü, (Ara Rapor 1982– 2001), Tokat, 35s.
  • Phillips, J. (2003). Alluvial storage and the long-term stability of sediment yields, Basin Research, 15, 153– 163.
  • Renard, K.G. ve J.J. Stone. (1982). Sediment yield from small semiarid Rangeland watersheds, Proceedings, Workshop on Estimating Erosion and Sediment Yield on Rangelands, Tucson, AZ,USDA. ARS Agricultural Reviews and Manuals ARM-W-26, June 1982, 129–144.
  • Renwick, W.H., Smith, S.V., Bartley, J.D. ve Buddemeier, R.W. (2005). The role of impoundments in the sediment bugdet of the conterminous United States, Dams in Geomorphology, 71 (1-2), 99-111.
  • Sadeghi, S.H.R. (2004). Application of Musle in prediction of sediment yield in Iranian conditions, Proceedings, ISCO2004-13th International Soil Conservation Organization Conference, Brisbane.
  • Sadeghi, S.H.R. ve Mizuyama, T. (2010). Applicability of the modified universal soil loss equation for prediction of sediment yield in Khanmirza Watershed, Iran, Hydrological Sciences Journal, 52(5), 1068-1075.
  • Sevinç, A.N. ve Dutluca, I. (1985). Gölet Havzası sediment verimi araştırması, Köy Hizmetleri Eskişehir Araştırma Enstitüsü Müdürlüğü Yayınları, Genel Yayın No:193, Rapor Serisi No: 146, Eskişehir.
  • Sevinç, A.N. (1990). Eskişehir – Sivrihisar – Mercan Köyü Yağrı Göleti Havzası sediment veriminin araştırılması, Köy Hizmetleri Eskişehir Araştırma Enstitüsü Müdürlüğü Yayınları, Genel Yayın No:214, Rapor Serisi No: 164, Eskişehir.
  • Smith, S.J., Williams, J.R., Menzel, R.G., Coleman, G.A. (1984). Prediction of sediment yield from southern plains grasslands with the modified universal soil loss equation, Journal of Range Management, 37(4), 295-297.
  • Stone, M. ve Saunderson, H.C. (1996). Regional patterns of sediment yield in the Laurentian Great Lakes basin in Walling, D.E. ve Webb, B.W., eds, Erosion and Sediment Yield, Global and Regional Perspectives (Proceedings of the Exeter Symposium, July 1996), IAHS Publ. no. 236, 125–131.
  • Strakhov, N.M. (1967). Principles of Lithogenesis, Vol. 1, 245. Oliver and Boyd, Edinburgh.
  • Valero-Garc´es, B.L., Navas, A., Machin, J., ve Walling, D. (1999). Sediment sources and siltation in mountain reservoirs: a case study from the central Spanish Pyrenees, Geomorphology, 28, 23–41.
  • Verstraeten, G., Poesen, J., de Vente, J. ve Koninckx, X. (2003). Sediment yield variability in Spain: a quantitative and semiqualitative analysis using reservoir sedimentation rates, Geomorphology, 50(4), 327– 348.
  • Walling, D.E. ve Woodward, J.C. (1995). Tracing sources of suspended sediment in river basins: a case study of the River Culm, Devon, UK, Journal of Marine and Freshwater Research, 46, 327–336.
  • Walling, D.E., Owens, P.N. ve Leeks, G.J.L. (1999). Fingerprinting suspended sediment sources in the catchment of the River Ouse, Yorkshire, UK, Hydrological Processes, 13, 955–975.
  • Woida, K., Moines, D. ve Clark, K.B. (2001). A GIS application of PSIAC for predicting sediment-yield rates, Proceedings, 7th Federal Interagency Sedimentation Conference. X-25– X-32, Reno, NV.
  • White, S. (2005). Sediment yield prediction and modelling, Hydrological Processes, 19, 3053–3057.
  • Walling, D.E., Webb, B.W. (1983). Patterns of sediment yield in Gregory, K.J., ed, Background to Palaeohydrology, John Wiley and Sons, 69–100.
  • Wasson, R.J. (2002). What approach to the modelling of catchment scale erosion and sediment transport should be adopted? in Summer, W. ve Walling, D.E., eds, Modelling Erosion, Sediment Transport and Sediment Yield, IHP-VI Technical Documents in Hydrology, UNESCO, 1 – 11, Paris.
  • Williams, J.R. ve Berndt, H.D. (1972). Sediment yield computed with universal equation, Journal of the Hydraulics Div., ASCE, 98, HY6. Yanmaz, M. (1997). Applied Water Resourses Engineering, METU Press. Ankara.
  • Zhang, Y., Degroote, J., Wolter, C. ve Sugurmaran R. (2009). Integration of modified universal soil loss equation (MUSLE) into a GIS framework to assess soil erosion risk, Land Degradation and Development, 20, 84 – 91.
Year 2018, Volume: 9 Issue: 2, 963 - 973, 25.09.2018

Abstract

References

  • Aksu, N. ve Uçan, K. (2012). Hurman Çayı havzasında ölçülen ve ampirik yöntemlerle hesaplanan sediment verimlerinin karşılaştırılması, KSU Doğa Bil. Dergisi, 15(3), 1-8.
  • Arekhi, S., Shabani, A. ve Alavipanah, S.K. (2011). Evaluation of integrated KW-GIUH and MUSLE models to predict sediment yield using Geographic Information System (GIS) (Case Study: Kengir Watershed, Iran), African Journal of Agricultural Research, 6(18), 4185-4198.
  • Arekhi, S. (2008). Evaluating long-term annual sediment yield estimating potential of GIS interfaced MUSLE model on two micro-watersheds, Pak J. Biol. Sci., 1(2), 270-4.
  • Aybaş, M.C. (1976). Beytepe Kompleks Havzasında Sediment Verimi Araştırması, Ankara, (Basılmamış).
  • Bathurst, J.C., Kilsby, C.G. ve White, S.M. (1996). Modelling the impacts of climate and land use change on basin hydrology and soil erosion in Mediterranean Europe in Thornes J.B. ve Brandt C.J. , eds, Mediterranean Desertification and Land Use,. Wiley, 355–387.
  • Birkinshaw, S.J. ve Bathurst, J.C. (2006). Model study of the relationship between sediment yield and river basin area, Earth Surface Processes and Landforms, 31(6), 750- 761
  • Blaszczynski, J. (2003). Estimating watershed runoff and sediment yield using a GIS interface to curve number and MUSLE models, Soils and Geology, Resources Notes, 66.
  • Buendia, C., Herrero, A., Sabater, S. ve Batalla, R.J. (2016). An appraisal of the sediment yield in western Mediterranean river basins, Science of the Total Environment, 572, 538–553.
  • Bussi, G., Rodriguez-Lloveras, X., Frances, F., Benito, G., Sanchez-Moya, Y. ve Sopena, A. (2013). Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment, Hydrology and Earth System Sciences, 17, 3339–3354.
  • Carter, J., Owens, P.N., Walling, D.E. ve Leeks, G.J.L. (2003). Fingerprinting suspended sediment sources in a large urban river system, Science of the Total Environment, 314-316, 513–534.
  • Dedkov, A. (2004). The relationship between sediment yield and drainage basin area in Golosov, V., Belyaev, V. ve Walling, D.E., eds, Sediment Transfer through the Fluvial System, IAHS Publication 288, 197-204, Wallingford, Oxon, UK.
  • Demirkıran, O. (2007). Ankara Yenimahalle Güvenç Gölet Havzası sediment verimi, Toprak Gübre ve Su Kaynakları Merkez Araştırma Enstitüsü Müdürlüğü Ankara, Proje No: TAGEM-BBTOPRAKSU- 2007/48.
  • de Vente, J. ve Poesen, J. (2005). Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative models, Earth-Science Reviews, 71, 95–125
  • Erksine, W.D., Mahmoudzadeh, A. ve Myers, C. (2002). Land Use Effects on Sediment Yields and Soil Loss Rates in Small Basins of Triassic Sandstone Near, Catena, 49, 271-287.
  • Fournier, F. (1960). Climat et Erosion, 201, P.U.F., Paris.
  • Garcia-Ruiz, J.M., Lasanta, T., Marti, C., Gonzalez, C., White, S.M., Ortigosa, L. ve Ruiz Flano P. (1995). Changes in runoff and erosion as a consequence of land-use changes in the central Spanish Pyrenees, Physics and Chemistry of the Earth, 20, 301–307.
  • Goksu, E., Uygun, İ., Alışık, A. ve Barlas, S. (1979). Türkiye akarsularında sediment verimi ve sediment taşıma miktarları ile havza parametreleri arasındaki ilişkiler, Bildiriler, I.Ulusal Hidroloji Kongresi, İTÜ, İstanbul.
  • Grauso, S., Fattoruso, G., Crocetti, C. ve Montanari, A. (2008). Estimating the suspended sediment yield in a river network by means of geomorphic parameters and regression relationships, Hydrology and Earth System Sciences, 12, 177-191.
  • Gruszowski, K.E., Foster, I.D.L., Les, J.A. ve Charlesworth, S.M. (2003). Sediment sources and transport pathways in a rural catchment, Herefordshire, UK, Hydrological Processes, 17, 2665–2681.
  • Harden, C.P. (1993). Land-use, soil-erosion and reservoir sedimentation in an Andean drainage-basin in Ecuador, Mountain Research and Development, 13, 177–184.
  • İrvem, A. ve Tülücü, K. (2004). Coğrafi bilgi sistemi ile toprak kaybı ve sediment verimi tahmin modelinin oluşturulması ve seyhan-körkün alt havzasına uygulanması, Çukurova Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13 (1).
  • Jackson, W.L., Gebhardt K. ve Van Haveren B.P. (1986). Use of modified universal soil loss equation for average annual sediment yield estimates on small rangeland drainage basins in R.F. Hadley, ed., Drainage basin sediment delivery, IAHS Publication 159, 413-422, Washington D.C.
  • Jakeman, A.J., Green, T.R., Beavis, S.G., Zhang, L., Dietrich, C.R. ve Crapper, P.F. (1999). Modelling upland and in-stream erosion, sediment and phosphorus transport in a large catchment, Hydrological Processes, 13(5), 745– 752.
  • Jansson, M.B. (1988). A Global Survey of Sediment Yield, Physical Geography, 70(1/2), 81-98.
  • Jinfa, L. ve Xiuhua, H. (2004). The relationship between sediment yield and catchment characteristics in the middle Yellow River basin of China in Golosov, V., Belyaev, V. ve Walling, D.E., eds, Sediment Transfer through the Fluvial System, IAHS Publication 288, 212–219, Wallingford, Oxon, UK.
  • Jiongxin, X, Yunxia, Y. (2005). Scale effects on specific sediment yield in the Yellow River basin and geomorphological explanations, Journal of Hydrology, 307, 219- 232.
  • Kraehmer, H., ed, (2016). Atlas of Weed Mapping, John Wiley and Sons. 488p.
  • Koç, G. (2014). Modifiye edilmiş üniversal toprak kayıpları eşitliği (MUSLE) kullanılarak Tarsus (Mersin)–Topçu Deresi alt havzasında erozyon potansiyelinin değerlendirilmesi, Yüksek Lisans Tezi, Hacettepe Üniversitesi Jeoloji Mühendisliği Anabilim Dalı, Ankara. Kuşvuran, K. (2011). Mersin – Tarsus Topçu Deresi Havzasında Yağış, Akım ve Alt Havzasında Sediment Veriminin Araştırılması, Tarımsal Araştırmalar Genel Müdürlüğü Toprak ve Su Kaynakları Tarsus Araştırma Enstitüsü, Proje No: TAGEM-BB-TOPRAKSU-2011/125.
  • Lu, X.X. ve Higgitt, D.L. (1998). Recent changes in sediment yield in the Upper Yangtze, China, Environmental Management, 22, 697–709.
  • Lu, X.X., Ashmore, P. ve Wang, J. (2003). Sediment yield mapping in a large river basin: the Upper Yangtze, China Environmental Modelling and Software, 18, 339–353.
  • Ludwig, W. ve Probst, J.L. (1998). River sediment discharge to the oceans: present-day controls and global budgets, American Journal of Science, 298, 265–295.
  • Miller, C.B. (1951). Analysis of flow–duration, sediment- rating curver method of computing sediment yield, U.S. Department of Interior, Bureau of Reclamation Sedimantation, Denver, Colorado.
  • Milliman, J.D. ve Meade, R.H. (1983). World-wide delivery of river sediment to the oceans, Journal of Geology, 91, 1–21 Neil, D.T., Mazari, R.K. (1993). “Sediment yield mapping using small dam sedimentation surveys, Southern Tablelands, New South Wales”, Catena, 20: 13–25.
  • Ozturk, F. (1996). Suspended sediment yields of rivers in Turkey in Walling, D.E. ve Webb, B.W., eds., Erosion and Sediment Yield: Global and Regional Perspectives (Proceedings of the Exeter Symposium, July 1996), IAHS Publ. no. 236, 65–71.
  • Oğuz, İ. ve Balcın, M. (2001). Artova Ekinli II Golet Havzası Sediment Verimi, Tokat Toprak ve Su Kaynakları Araştırma Enstitüsü, (Ara Rapor 1982– 2001), Tokat, 35s.
  • Phillips, J. (2003). Alluvial storage and the long-term stability of sediment yields, Basin Research, 15, 153– 163.
  • Renard, K.G. ve J.J. Stone. (1982). Sediment yield from small semiarid Rangeland watersheds, Proceedings, Workshop on Estimating Erosion and Sediment Yield on Rangelands, Tucson, AZ,USDA. ARS Agricultural Reviews and Manuals ARM-W-26, June 1982, 129–144.
  • Renwick, W.H., Smith, S.V., Bartley, J.D. ve Buddemeier, R.W. (2005). The role of impoundments in the sediment bugdet of the conterminous United States, Dams in Geomorphology, 71 (1-2), 99-111.
  • Sadeghi, S.H.R. (2004). Application of Musle in prediction of sediment yield in Iranian conditions, Proceedings, ISCO2004-13th International Soil Conservation Organization Conference, Brisbane.
  • Sadeghi, S.H.R. ve Mizuyama, T. (2010). Applicability of the modified universal soil loss equation for prediction of sediment yield in Khanmirza Watershed, Iran, Hydrological Sciences Journal, 52(5), 1068-1075.
  • Sevinç, A.N. ve Dutluca, I. (1985). Gölet Havzası sediment verimi araştırması, Köy Hizmetleri Eskişehir Araştırma Enstitüsü Müdürlüğü Yayınları, Genel Yayın No:193, Rapor Serisi No: 146, Eskişehir.
  • Sevinç, A.N. (1990). Eskişehir – Sivrihisar – Mercan Köyü Yağrı Göleti Havzası sediment veriminin araştırılması, Köy Hizmetleri Eskişehir Araştırma Enstitüsü Müdürlüğü Yayınları, Genel Yayın No:214, Rapor Serisi No: 164, Eskişehir.
  • Smith, S.J., Williams, J.R., Menzel, R.G., Coleman, G.A. (1984). Prediction of sediment yield from southern plains grasslands with the modified universal soil loss equation, Journal of Range Management, 37(4), 295-297.
  • Stone, M. ve Saunderson, H.C. (1996). Regional patterns of sediment yield in the Laurentian Great Lakes basin in Walling, D.E. ve Webb, B.W., eds, Erosion and Sediment Yield, Global and Regional Perspectives (Proceedings of the Exeter Symposium, July 1996), IAHS Publ. no. 236, 125–131.
  • Strakhov, N.M. (1967). Principles of Lithogenesis, Vol. 1, 245. Oliver and Boyd, Edinburgh.
  • Valero-Garc´es, B.L., Navas, A., Machin, J., ve Walling, D. (1999). Sediment sources and siltation in mountain reservoirs: a case study from the central Spanish Pyrenees, Geomorphology, 28, 23–41.
  • Verstraeten, G., Poesen, J., de Vente, J. ve Koninckx, X. (2003). Sediment yield variability in Spain: a quantitative and semiqualitative analysis using reservoir sedimentation rates, Geomorphology, 50(4), 327– 348.
  • Walling, D.E. ve Woodward, J.C. (1995). Tracing sources of suspended sediment in river basins: a case study of the River Culm, Devon, UK, Journal of Marine and Freshwater Research, 46, 327–336.
  • Walling, D.E., Owens, P.N. ve Leeks, G.J.L. (1999). Fingerprinting suspended sediment sources in the catchment of the River Ouse, Yorkshire, UK, Hydrological Processes, 13, 955–975.
  • Woida, K., Moines, D. ve Clark, K.B. (2001). A GIS application of PSIAC for predicting sediment-yield rates, Proceedings, 7th Federal Interagency Sedimentation Conference. X-25– X-32, Reno, NV.
  • White, S. (2005). Sediment yield prediction and modelling, Hydrological Processes, 19, 3053–3057.
  • Walling, D.E., Webb, B.W. (1983). Patterns of sediment yield in Gregory, K.J., ed, Background to Palaeohydrology, John Wiley and Sons, 69–100.
  • Wasson, R.J. (2002). What approach to the modelling of catchment scale erosion and sediment transport should be adopted? in Summer, W. ve Walling, D.E., eds, Modelling Erosion, Sediment Transport and Sediment Yield, IHP-VI Technical Documents in Hydrology, UNESCO, 1 – 11, Paris.
  • Williams, J.R. ve Berndt, H.D. (1972). Sediment yield computed with universal equation, Journal of the Hydraulics Div., ASCE, 98, HY6. Yanmaz, M. (1997). Applied Water Resourses Engineering, METU Press. Ankara.
  • Zhang, Y., Degroote, J., Wolter, C. ve Sugurmaran R. (2009). Integration of modified universal soil loss equation (MUSLE) into a GIS framework to assess soil erosion risk, Land Degradation and Development, 20, 84 – 91.
There are 55 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Ömer Levend Aşıkoğlu This is me 0000-0002-2981-5903

Ebru Eriş 0000-0003-0601-7666

Publication Date September 25, 2018
Submission Date July 13, 2018
Published in Issue Year 2018 Volume: 9 Issue: 2

Cite

IEEE Ö. L. Aşıkoğlu and E. Eriş, “Türkiye havzalarında sediment veriminin alansal değişimi”, DUJE, vol. 9, no. 2, pp. 963–973, 2018.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456