Research Article
BibTex RIS Cite

Boru demeti üzerinden geçen Al2O3- su nanoakışkanın pulsatif akışının ısı transferine etkisi

Year 2019, Volume: 10 Issue: 2, 621 - 631, 20.06.2019
https://doi.org/10.24012/dumf.435490

Abstract

Bu
çalışmada, sabit duvar sıcaklığına sahip boru demetleri üzerinden geçen Al2O3-su
nanoakışkanın laminer pulsatif akışının ısı transferine ve sürtünme faktörüne
etkileri sayısal olarak incelenmiştir. Çalışmada, dairesel kesitli borular
kademeli olarak yerleştirilmiş ve analizler iki boyutlu olarak
gerçekleştirilmiştir. Kullanılan eşitlikler, sonlu hacimler metodu ile SIMPLE
algoritması kullanılarak çözülmüştür. Sayısal incelemelerde, nanoakışkan tipi
ve partikül hacim oranı sabit tutulmuş olup, analizler Reynolds sayısının sabit
bir değeri için pulsatif parametrelerin değiştirilmesi ile elde edilmiştir. Bu
parametrelerin ısı transferi karakteristiği ve sürtünme faktörü üzerindeki
etkileri daimi akış şartları ile karşılaştırılmıştır. Boru demeti üzerinden
pulsatif akışta anlık hız ve sıcaklık dağılımları elde edilmiştir. Sayısal
sonuçlar, ısı transferindeki iyileşmenin pulsatif parametrelerden oldukça
etkilendiğini göstermiştir. Pulsatif genlik ve frekans arttıkça ısı
transferinin de arttığı, ancak bu artışın sürtünme faktöründe de bir miktar
artışa sebep olduğu gözlemlenmiştir. Çalışma sonucunda boru demetleri üzerinden
nanoakışkanların pulsatif akışı için en iyi termo-hidrolik performansı sağlayan
parametreler belirlenmiştir. Sonuçlar boyutsuz parametrelerin bir fonksiyonu
olarak verilmiştir. 

References

  • Abdel-Rehim, Z.S., (2012). A numerical study of heat transfer and fluid flow over an in-line tube bank, Energy Sources, Part A: Recov. Util. Environ. Eff. 34 (22) 2123–2136.
  • Ahmed, M. A., Yaseen, M. M., Yusoff, M. Z. (2017). Numerical study of convective heat transfer from tube bank in cross flow using nanofluid. Case Studies in Thermal Engineering, 10, 560-569.
  • Akdag, U., (2010). Numerical investigation of pulsating flow around a discrete heater in a channel. International Communication Heat and Mass Transfer, 37 (7), 881-889.
  • Akdag, U., Akcay, S., Demiral, D., (2014). Heat Transfer Enhancement with Laminar Pulsating Nanofluid Flow in a Wavy Channel, International Communication Heat and Mass Transfer, 59, 17–23.
  • Alam, T., Kim, M.H., (2018). A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications. Renewable and Sustainable Energy Reviews, 81, 813-839.
  • ANSYS Fluent user guide & theory guide- Release 15.0, (2015). Fluent Ansys Inc, USA.
  • Gamrat, G., Marinet, M.F., Person, S. L., (2008). Numerical study of heat transfer over banks of rods in small Reynolds number cross-flow, International Journal Heat and Mass Transfer, 51, 853–864.
  • Haitham, M.S., Bahaidarah, H.M.S., Anand, N.K., Chen, H.C., (2005). A numerical study of fluid flow and heat transfer over a bank of flat tubes, Numerical Heat Transfer, Part A Appl. 48:4, 359–385.
  • Heris, S.Z., Etemad S.G., Esfahany M.N., (2009). Convective heat transfer of a Cu/water nanofluid flowing through a circular tube, Experimental Heat Transfer, 22, 217–227.
  • Ho, C.J., Chang, C.Y., Wei, M.Y., (2017). An experimental study of forced convection effectiveness of Al2O3-water nanofluid flowing in circular tubes, International Communication Heat and Mass Transfer, 83, 23–29.
  • Jun, B.H, Jiin, Y.J., (2011). Numerical investigation of nanofluids laminar convective heat transfer through staggered and in-lined tube banks, F.L. Gaol et al. (Eds.), Proc. of the 2nd International Congress on CACS, AISC 144, 483–490.
  • Kakac, S., Pramuanjaroenkij, A., (2009). Review of Convective Heat Transfer Enhancement with Nanofluids”. International Journal Heat and Mass Transfer, 52, 3187–3196.
  • Khan, W.A., Culham, J.R., Yovanovich, M.M., (2006). Convection heat transfer from tube banks in crossflow: analytical approach, International Journal Heat and Mass Transfer, 49, 25–26, 4831–4838.
  • Konstantinidis, E., Castiglia, D., Balabani, S., Yianneskis, M., (2000). On the Flow and Vortex Shedding Characteristics of an In-Line Tube Bundle in Steady and Pulsating Crossflow,. Chemical Engineering Research and Design, 78 (8), 1129–1138.
  • Konstantinidis, E., Balabani, S., Yianneskis, M.. (2002). A study of vortex shedding in a staggered tube array for steady and pulsating cross-flow. Journal of Fluids Engineering 124:3, 737-746.
  • Lavasani, A.M., Bayat, H., Maarefdoost, T., (2014). Experimental study of convective heat transfer from in-line cam shaped tube bank in crossflow, Applied Thermal Engineering, 65:1–2, 85–93.
  • Li, Q., Xuan, Y. (2000). Heat transfer enhancement of nanofluids, International Journal Heat and Fluid Flow, 21, 58–64.
  • Mangrulkar, C.K., Dhoble, A.S., Deshmukh, A.R., Mandavgane, S.A., (2017). Numerical investigation of heat transfer and friction factor characteristics from in-line cam shaped tube bank in crossflow, Applied Thermal Engineering. 110, 521–538.
  • Mangrulkar, C.K., Kriplani, V.M., (2016). Experimental investigation of convective heat transfer enhancement using alumina / water and copper oxide / water nanofluids, Thermal Science, 20, 1681–1692.
  • Minea, A.A., (2013). Effect of microtube length on heat transfer enhancement of a water/Al2O3 nanofluid at high Reynolds numbers, International Journal Heat and Mass Transfer, 62, 22–30.
  • Mueller, A.C., Chiou, J.P.. (1988). Review of various types of flow maldistribution in heat exchangers, Heat Transfer Engineering, 9: 2, 36-50.
  • Narrein, K., Sivasankaran, S., Ganesan, P., (2016). Numerical investigation of two-phase laminar pulsating nanofluid flow in a helical microchannel, Numerical Heat Transfer, Part A: Applications, 69: (8), 921-930.
  • Patel, J.T., Attal, M.H., (2016). An Experimental Investigation of Heat Transfer Characteristics of Pulsating Flow in Pipe. International Journal of Current Engineering and Technology, 6, 5: 1515-1521.
  • Rahgoshay, M., Ranjbar, A. A., Ramiar, A. (2012). Laminar pulsating flow of nanofluids in a circular tube with isothermal wall. International Communication Heat and Mass Transfer, 39 (3) 463-469.
  • Salcedo, E., Cajas, J.C., Treviño, C., Martínez, L., (2016). Unsteady mixed convection heat transfer from two confined isothermal circular cylinders in tandem: buoyancy and tube spacing effects, International Journal Heat and Fluid Flow, 60, 12–30.
  • Yang, Y.T., Lai, F.H., (2010). Numerical study of heat transfer enhancement with the use of nanofluids in radial flow cooling system, International Journal Heat and Mass Transfer, 53: 25–26, 5895–5904.
  • Zhang, L.Z., Ouyang, Y.W., Zhang, Z.G., Wang, S.F., (2015). Oblique fluid flow and convective heat transfer across a tube bank under uniform wall heat flux boundary conditions, International Journal Heat and Mass Transfer, 91, 1259–1272.
  • Zukauskas, A., (1987). Heat transfer from tubes in cross flow, Advances in Heat Transfer, 18: 87.
Year 2019, Volume: 10 Issue: 2, 621 - 631, 20.06.2019
https://doi.org/10.24012/dumf.435490

Abstract

References

  • Abdel-Rehim, Z.S., (2012). A numerical study of heat transfer and fluid flow over an in-line tube bank, Energy Sources, Part A: Recov. Util. Environ. Eff. 34 (22) 2123–2136.
  • Ahmed, M. A., Yaseen, M. M., Yusoff, M. Z. (2017). Numerical study of convective heat transfer from tube bank in cross flow using nanofluid. Case Studies in Thermal Engineering, 10, 560-569.
  • Akdag, U., (2010). Numerical investigation of pulsating flow around a discrete heater in a channel. International Communication Heat and Mass Transfer, 37 (7), 881-889.
  • Akdag, U., Akcay, S., Demiral, D., (2014). Heat Transfer Enhancement with Laminar Pulsating Nanofluid Flow in a Wavy Channel, International Communication Heat and Mass Transfer, 59, 17–23.
  • Alam, T., Kim, M.H., (2018). A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications. Renewable and Sustainable Energy Reviews, 81, 813-839.
  • ANSYS Fluent user guide & theory guide- Release 15.0, (2015). Fluent Ansys Inc, USA.
  • Gamrat, G., Marinet, M.F., Person, S. L., (2008). Numerical study of heat transfer over banks of rods in small Reynolds number cross-flow, International Journal Heat and Mass Transfer, 51, 853–864.
  • Haitham, M.S., Bahaidarah, H.M.S., Anand, N.K., Chen, H.C., (2005). A numerical study of fluid flow and heat transfer over a bank of flat tubes, Numerical Heat Transfer, Part A Appl. 48:4, 359–385.
  • Heris, S.Z., Etemad S.G., Esfahany M.N., (2009). Convective heat transfer of a Cu/water nanofluid flowing through a circular tube, Experimental Heat Transfer, 22, 217–227.
  • Ho, C.J., Chang, C.Y., Wei, M.Y., (2017). An experimental study of forced convection effectiveness of Al2O3-water nanofluid flowing in circular tubes, International Communication Heat and Mass Transfer, 83, 23–29.
  • Jun, B.H, Jiin, Y.J., (2011). Numerical investigation of nanofluids laminar convective heat transfer through staggered and in-lined tube banks, F.L. Gaol et al. (Eds.), Proc. of the 2nd International Congress on CACS, AISC 144, 483–490.
  • Kakac, S., Pramuanjaroenkij, A., (2009). Review of Convective Heat Transfer Enhancement with Nanofluids”. International Journal Heat and Mass Transfer, 52, 3187–3196.
  • Khan, W.A., Culham, J.R., Yovanovich, M.M., (2006). Convection heat transfer from tube banks in crossflow: analytical approach, International Journal Heat and Mass Transfer, 49, 25–26, 4831–4838.
  • Konstantinidis, E., Castiglia, D., Balabani, S., Yianneskis, M., (2000). On the Flow and Vortex Shedding Characteristics of an In-Line Tube Bundle in Steady and Pulsating Crossflow,. Chemical Engineering Research and Design, 78 (8), 1129–1138.
  • Konstantinidis, E., Balabani, S., Yianneskis, M.. (2002). A study of vortex shedding in a staggered tube array for steady and pulsating cross-flow. Journal of Fluids Engineering 124:3, 737-746.
  • Lavasani, A.M., Bayat, H., Maarefdoost, T., (2014). Experimental study of convective heat transfer from in-line cam shaped tube bank in crossflow, Applied Thermal Engineering, 65:1–2, 85–93.
  • Li, Q., Xuan, Y. (2000). Heat transfer enhancement of nanofluids, International Journal Heat and Fluid Flow, 21, 58–64.
  • Mangrulkar, C.K., Dhoble, A.S., Deshmukh, A.R., Mandavgane, S.A., (2017). Numerical investigation of heat transfer and friction factor characteristics from in-line cam shaped tube bank in crossflow, Applied Thermal Engineering. 110, 521–538.
  • Mangrulkar, C.K., Kriplani, V.M., (2016). Experimental investigation of convective heat transfer enhancement using alumina / water and copper oxide / water nanofluids, Thermal Science, 20, 1681–1692.
  • Minea, A.A., (2013). Effect of microtube length on heat transfer enhancement of a water/Al2O3 nanofluid at high Reynolds numbers, International Journal Heat and Mass Transfer, 62, 22–30.
  • Mueller, A.C., Chiou, J.P.. (1988). Review of various types of flow maldistribution in heat exchangers, Heat Transfer Engineering, 9: 2, 36-50.
  • Narrein, K., Sivasankaran, S., Ganesan, P., (2016). Numerical investigation of two-phase laminar pulsating nanofluid flow in a helical microchannel, Numerical Heat Transfer, Part A: Applications, 69: (8), 921-930.
  • Patel, J.T., Attal, M.H., (2016). An Experimental Investigation of Heat Transfer Characteristics of Pulsating Flow in Pipe. International Journal of Current Engineering and Technology, 6, 5: 1515-1521.
  • Rahgoshay, M., Ranjbar, A. A., Ramiar, A. (2012). Laminar pulsating flow of nanofluids in a circular tube with isothermal wall. International Communication Heat and Mass Transfer, 39 (3) 463-469.
  • Salcedo, E., Cajas, J.C., Treviño, C., Martínez, L., (2016). Unsteady mixed convection heat transfer from two confined isothermal circular cylinders in tandem: buoyancy and tube spacing effects, International Journal Heat and Fluid Flow, 60, 12–30.
  • Yang, Y.T., Lai, F.H., (2010). Numerical study of heat transfer enhancement with the use of nanofluids in radial flow cooling system, International Journal Heat and Mass Transfer, 53: 25–26, 5895–5904.
  • Zhang, L.Z., Ouyang, Y.W., Zhang, Z.G., Wang, S.F., (2015). Oblique fluid flow and convective heat transfer across a tube bank under uniform wall heat flux boundary conditions, International Journal Heat and Mass Transfer, 91, 1259–1272.
  • Zukauskas, A., (1987). Heat transfer from tubes in cross flow, Advances in Heat Transfer, 18: 87.
There are 28 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Selma Akcay 0000-0003-2654-0702

Ünal Akdağ 0000-0002-1149-7425

Oktay Hacıhafızoğu 0000-0002-6487-5223

Doğan Demiral 0000-0001-9738-7632

Publication Date June 20, 2019
Submission Date June 21, 2018
Published in Issue Year 2019 Volume: 10 Issue: 2

Cite

IEEE S. Akcay, Ü. Akdağ, O. Hacıhafızoğu, and D. Demiral, “Boru demeti üzerinden geçen Al2O3- su nanoakışkanın pulsatif akışının ısı transferine etkisi”, DUJE, vol. 10, no. 2, pp. 621–631, 2019, doi: 10.24012/dumf.435490.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456