Research Article
BibTex RIS Cite

Parçacık Sürü Optimizasyonu Tabanlı PI-PD ile Twin Rotor Denetimi

Year 2019, Volume: 10 Issue: 2, 523 - 530, 20.06.2019
https://doi.org/10.24012/dumf.548629

Abstract

Bu çalışmada, helikopter sistemleri ve son zamanlarda üzerinde oldukça sık çalışılan drone sisteminin temeli olan Twin Rotor MIMO Sistem (TRMS)’nin kontrolü üzerinde çalışılmıştır. TRMS kontrol alanında kullanılan temel sistemler arasında yer almaktadır. Bu çalışmada, günlük hayatta sağlık, askeri, ulaşım, yangın anında yangına müdahale amacıyla kullanılan helikopterler bu amaçlarla kullanılırken bir yerden başka bir yere ulaşması anında havada belli bir irtifada iken ve kalkış ve iniş anında içerisinde bulunan bireylerin ve taşınan önemli ekipmanların zarar görmemesi için kontrol işlemlerinin çok iyi yapılması ve istenilen kontrol sinyaline sistem cevabının oldukça hızlı olması gerekmektedir. Sistem cevabındaki aksaklıklar ve denetleyicinin istenilen şekilde çalışmaması hava araçlarında kazalara ve böylece can ve mal kayıplarına sebebiyet verebilir. Literatürde TRMS’nin denetimi çoğunlukla PID denetleyiciler kullanılarak gerçekleştirilmektedir. Ancak PID denetleyiciler açık çevrim kararlı sistemler hariç yetersiz performans gösterebilmektedir. PI-PD denetleyiciler ise, PID denetleyicilerin yetersiz kaldığı durumlarda, çok daha iyi performans verebilmektedir. Dolayısıyla, bu çalışmada TRMS’nin kontrolü PI-PD denetleyiciler kullanılarak gerçekleştirilmiş ve PID denetleyicilerden daha iyi kapalı çevrim cevaplar elde edildiği benzetim ve gerçek zamanlı uygulama ile gösterilmiştir. Hem PID hem de PI-PD denetleyicinin ayar parametreleri Parçacık Sürü Optimizasyonu ile ISTE kriterine göre hesaplanmıştır.

References

  • Allouani, F., Boukhetala, D., & Boudjema, F. (2012). Particle swarm optimization based fuzzy sliding mode controller for the Twin Rotor MIMO system. Proceedings of the Mediterranean Electrotechnical Conference - MELECON, 1063–1066.
  • Biswas, P., Maiti, R., Kolay, A., Das Sharma, K., & Sarkar, G. (2014). PSO based PID controller design for twin rotor MIMO system. International Conference on Control, Instrumentation, Energy and Communication, CIEC 2014, 56–60.
  • Bouarroudj, N., Djari, A., Boukhetala, D., & Boudjema, F. (2017). Tuning of decentralized fuzzy logic sliding mode controller using PSO algorithm for nonlinear Twin Rotor Mimo System. 2017 6th International Conference on Systems and Control, ICSC 2017, 45–50.
  • Dang Huu, T., & Ismail, I. B. (2016). Modelling of Twin Rotor MIMO system. 2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA), 1–6.
  • Deniz, M., Bidikli, B., Bayrak, A., Ozdemirel, B., & Tatlicioglu, E. (2015). Modelling twin rotor system with artificial neural networks | Cift Rotorlu Sistemin Yapay Sinir Aglarl Ile Modellenmesi. 2015 23rd Signal Processing and Communications Applications Conference, SIU 2015 - Proceedings, 0–3. Figure, P. C., Yang, X., Cui, J., Lao, D., Li, D., Chen, J., … Bonvin, D. (2017). Twin Rotor MIMO System Control Experiments. ISA Transactions.
  • Juang, J. G., Lin, R. W., & Liu, W. K. (2008). Comparison of classical control and intelligent control for a MIMO system. Applied Mathematics and Computation. Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization, Proceedings of IEEE International Conference on Neural Networks Vol. IV: 1942–1948.
  • Liu, T. K., & Juang, J. G. (2009). A single neuron PID control for twin rotor MIMO system. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 186–191.
  • Mahmoud, T. S., Marhaban, M. H., Hong, T. S., & Ng, S. (2009). ANFIS controller with fuzzy subtractive clustering method to reduce coupling effects in Twin Rotor MIMO system (TRMS) with less memory and time usage. Proceedings - International Conference on Advanced Computer Control, ICACC 2009, 19–23.
  • Neeraj, P. J., & Seema, P. N. (2018). Control of Twin Rotor MIMO System Using Cross PID Control Technique. Proceedings of the 2018 IEEE International Conference on Communication and Signal Processing, ICCSP 2018.
  • Pandey, S. K., Dey, J., & Banerjee, S. (2017). Design and real-time implementation of robust PID controller for Twin Rotor MIMO System (TRMS) based on Kharitonov’s theorem. 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, ICPEICES 2016, 1–6.
  • Pratap, B. (2012). Neuro sliding mode controller for twin rotor control system. 2012 Students Conference on Engineering and Systems, SCES 2012, 9–13.
  • Ramalakshmil, S., & Manoharan, S. (2012). Non-linear Modeling and PID Control of Twin Rotor MIMO System of Electrical & Electronics Engineering , Thiagarajar College of Engineering , Madurai . IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), (978), 366–369.
  • Saha, A., & Chakraborty, S. (2016). Genetic algorithm based I-PD controller design for Twin Rotor MIMO system. 2016 2nd International Conference on Control, Instrumentation, Energy and Communication, CIEC 2016. Silva, A., Caminhas, W., Lemos, A., & Gomide, F. (2015). Real-time nonlinear modeling of a twin rotor MIMO system using evolving neuro-fuzzy network. IEEE SSCI 2014 - 2014 IEEE Symposium Series on Computational Intelligence - CICA 2014: 2014 IEEE Symposium on Computational Intelligence in Control and Automation, Proceedings.
  • Subudhi, B., & Jena, D. (2009). Nonlinear system identification of a twin rotor MIMO system. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 1–6.
  • Toha, S. F., Abd Latiff, I., Mohamad, M., & Tokhi, M. O. (2009). Parametric modelling of a TRMS using dynamic spread factor particle swarm optimisation. 11th International Conference on Computer Modelling and Simulation, UKSim 2009.
  • Toha, S. F., & Tokhi, M. O. (2010). ANFIS modelling of a twin rotor system using particle swarm optimisation and RLS. 2010 IEEE 9th International Conference on Cybernetic Intelligent Systems, CIS 2010. Wen, P., & Li, Y. (2011). Twin rotor system modeling, de-coupling and optimal control. 2011 IEEE International Conference on Mechatronics and Automation, ICMA 2011, 1839–1842.
Year 2019, Volume: 10 Issue: 2, 523 - 530, 20.06.2019
https://doi.org/10.24012/dumf.548629

Abstract

References

  • Allouani, F., Boukhetala, D., & Boudjema, F. (2012). Particle swarm optimization based fuzzy sliding mode controller for the Twin Rotor MIMO system. Proceedings of the Mediterranean Electrotechnical Conference - MELECON, 1063–1066.
  • Biswas, P., Maiti, R., Kolay, A., Das Sharma, K., & Sarkar, G. (2014). PSO based PID controller design for twin rotor MIMO system. International Conference on Control, Instrumentation, Energy and Communication, CIEC 2014, 56–60.
  • Bouarroudj, N., Djari, A., Boukhetala, D., & Boudjema, F. (2017). Tuning of decentralized fuzzy logic sliding mode controller using PSO algorithm for nonlinear Twin Rotor Mimo System. 2017 6th International Conference on Systems and Control, ICSC 2017, 45–50.
  • Dang Huu, T., & Ismail, I. B. (2016). Modelling of Twin Rotor MIMO system. 2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA), 1–6.
  • Deniz, M., Bidikli, B., Bayrak, A., Ozdemirel, B., & Tatlicioglu, E. (2015). Modelling twin rotor system with artificial neural networks | Cift Rotorlu Sistemin Yapay Sinir Aglarl Ile Modellenmesi. 2015 23rd Signal Processing and Communications Applications Conference, SIU 2015 - Proceedings, 0–3. Figure, P. C., Yang, X., Cui, J., Lao, D., Li, D., Chen, J., … Bonvin, D. (2017). Twin Rotor MIMO System Control Experiments. ISA Transactions.
  • Juang, J. G., Lin, R. W., & Liu, W. K. (2008). Comparison of classical control and intelligent control for a MIMO system. Applied Mathematics and Computation. Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization, Proceedings of IEEE International Conference on Neural Networks Vol. IV: 1942–1948.
  • Liu, T. K., & Juang, J. G. (2009). A single neuron PID control for twin rotor MIMO system. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 186–191.
  • Mahmoud, T. S., Marhaban, M. H., Hong, T. S., & Ng, S. (2009). ANFIS controller with fuzzy subtractive clustering method to reduce coupling effects in Twin Rotor MIMO system (TRMS) with less memory and time usage. Proceedings - International Conference on Advanced Computer Control, ICACC 2009, 19–23.
  • Neeraj, P. J., & Seema, P. N. (2018). Control of Twin Rotor MIMO System Using Cross PID Control Technique. Proceedings of the 2018 IEEE International Conference on Communication and Signal Processing, ICCSP 2018.
  • Pandey, S. K., Dey, J., & Banerjee, S. (2017). Design and real-time implementation of robust PID controller for Twin Rotor MIMO System (TRMS) based on Kharitonov’s theorem. 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, ICPEICES 2016, 1–6.
  • Pratap, B. (2012). Neuro sliding mode controller for twin rotor control system. 2012 Students Conference on Engineering and Systems, SCES 2012, 9–13.
  • Ramalakshmil, S., & Manoharan, S. (2012). Non-linear Modeling and PID Control of Twin Rotor MIMO System of Electrical & Electronics Engineering , Thiagarajar College of Engineering , Madurai . IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), (978), 366–369.
  • Saha, A., & Chakraborty, S. (2016). Genetic algorithm based I-PD controller design for Twin Rotor MIMO system. 2016 2nd International Conference on Control, Instrumentation, Energy and Communication, CIEC 2016. Silva, A., Caminhas, W., Lemos, A., & Gomide, F. (2015). Real-time nonlinear modeling of a twin rotor MIMO system using evolving neuro-fuzzy network. IEEE SSCI 2014 - 2014 IEEE Symposium Series on Computational Intelligence - CICA 2014: 2014 IEEE Symposium on Computational Intelligence in Control and Automation, Proceedings.
  • Subudhi, B., & Jena, D. (2009). Nonlinear system identification of a twin rotor MIMO system. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 1–6.
  • Toha, S. F., Abd Latiff, I., Mohamad, M., & Tokhi, M. O. (2009). Parametric modelling of a TRMS using dynamic spread factor particle swarm optimisation. 11th International Conference on Computer Modelling and Simulation, UKSim 2009.
  • Toha, S. F., & Tokhi, M. O. (2010). ANFIS modelling of a twin rotor system using particle swarm optimisation and RLS. 2010 IEEE 9th International Conference on Cybernetic Intelligent Systems, CIS 2010. Wen, P., & Li, Y. (2011). Twin rotor system modeling, de-coupling and optimal control. 2011 IEEE International Conference on Mechatronics and Automation, ICMA 2011, 1839–1842.
There are 16 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

İbrahim Kaya 0000-0002-8393-1358

Cuma Anıl Takeş This is me

Fadi Alyoussef This is me 0000-0003-1878-1549

Publication Date June 20, 2019
Submission Date April 3, 2019
Published in Issue Year 2019 Volume: 10 Issue: 2

Cite

IEEE İ. Kaya, C. A. Takeş, and F. Alyoussef, “Parçacık Sürü Optimizasyonu Tabanlı PI-PD ile Twin Rotor Denetimi”, DUJE, vol. 10, no. 2, pp. 523–530, 2019, doi: 10.24012/dumf.548629.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456