Research Article
BibTex RIS Cite

Çatı Üstü PV Elektrik Üretim Potansiyelinin Belirlenmesi: Şanlıurfa Örneği

Year 2021, Volume: 12 Issue: 1, 69 - 77, 13.01.2021
https://doi.org/10.24012/dumf.860242

Abstract

Şanlıurfa’nın yıl boyunca günlük ortalama güneş ışınım değeri yaklaşık 5.0 kWh/m2 ‘dir. Bu potansiyeli değerlendirmek amacıyla çatı üstü fotovoltaik panellerin yıllık enerji üretim değerleri hesaplanmıştır. Bu analiz için Harran Üniversitesine bağlı Şanlıurfa Teknik Bilimler Meslek Yüksekokulu binaları seçilmiştir. Hesaplamalarda en yaygın kullanılan üç farklı Fotovoltaik (PV) panel teknolojisi seçilmiştir. Bunlar mono-Si, p-Si ve CdTe ‘dür. Ayrıca bu çalışmada, aylık ortalama PV verimleri ve panel yüzey sıcaklıkları hesaplanmıştır. Çalışmanın sonucunda; incelenen PV paneller arasında yıllık bazda maksimum elektrik enerjisi üretiminin mono-Si panellerden elde edilebileceği görülmüştür. Mono-Si panelin ortalama birim alanda üretilebileceği maksimum elektrik enerjisi yaklaşık 345 kWh’tir. p-Si ve CdTe PV paneller ile yıllık elektrik enerji üretimi sırasıyla yaklaşık 311 kWh/m2 ve 234 kWh/m2 olarak bulunmuştur.

References

  • [1] Green, M. A. et al. (2019). Solar cell efficiency tables (Version 53). Prog Photovolt Res Appl., 27: 3– 12.
  • [2] https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/Turkiye-Gunluk-Guneslenme-Suresi.pdf
  • [3] https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/Turkiye-Yillik-G%C3%BCnes-Radyasyonu.pdf
  • [4] Ordonez J., Jadraque E., Alegre J., ve Martinez G., (2010). Analysis of the Photovoltaic Solar Energy Capacity of Residential Rooftops in Andalusia (Spain), Renewable and Sustainable Energy Reviews,vol.14, pp.2122–30
  • [5] Shukla A. K., Sudhakar K., Baredar P., (2016). Simulation and performance analysis of 110 kWp grid-connected photovoltaic system for residential building in India: A comparativeanalysis of various PV technology, Energy Reports, vol.2, pp.82–88
  • [6] Wittkopf S., Valliappan S., Liu L., Ang K. S., Cheng S. C. J., (2012). Analytical performance monitoring of a 142.5 kWp grid connected rooftop BIPV system in Singapore, Renew. Energy,vol.47, pp.9–20.
  • [7] Carr A., Pryor T., (2004). A comparison of the performance of different PV module types in temperate climates, J Solar Energy, 285: 76.
  • [8] Ghazali M. A. and Abdul Rahman A.M., (2012). The Performance of Three Different Solar Panels for Solar Electricity Applying Solar Tracking Device under the Malaysian Climate Condition, Energy and Environment Research, 2:1
  • [9] Sharma V., Kumar A., Sastry O.S., Chandel S.S., (2013). Performance assessment of different solar photovoltaic technologies under similar outdoor conditions, Energy, vol. 58, pp.511-518
  • [10] Baharwani V., Meena N., Sharma A., Stephen R. B., Mohanty P., (2015). Comparative Performance Assessment of different Solar PV Module Technologies, International Journal of Innovations in Engineering and Technology, vol. 5 Issue 1
  • [11] Ferrada P., Araya F., Marzo A., Fuentealba E., (2015). Performance analysis of photovoltaic systems of two different technologies in a coastal desert climate zone of Chile, Solar Energy, vol. 114, pp. 356–363
  • [12] Chukwu G. U., Chigbo N. I., Onyenonachi F. C., Udoinyang I. E., (2016) Comparative Study of Photovoltaic Modules and Their Performance in the Tropics: A Case Study in Nigeria, International Journal of Innovative Environmental Studies Research, 4(4):21-28
  • [13] Özcan, Ö , İzgı̇, E . (2020). Şebekeye Bağlı Fotovoltaik Çatı Sisteminin Karşılaştırmalı Performans Analizi . Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi , 23 (3) , 127-140 .
  • [14] Üçgül, İ., Tüysüzoğlu, E.,Yakut, M. Z. (2014) PV Çatı Uygulaması için Enerji Hesaplaması ve Ekonomik Analizi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 18(2), 1-6
  • [15] Cristofari C., Poggi P., Notton G., Muselli M. Thermal modeling of a photovoltaic module. In: Proceedings of Sixth IASTED International Conference on ‘‘Modeling, Simulation, and Optimization”, 2006. “September 11–13, Gaborone, Botswana, pp. 273–278.
  • [16] Skoplaki E. and Palyvos J. A., (2009). On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/ power correlations, Solar Energy, vol. 83, pp. 614-624
  • [17] Evans D.L., 1981. “Simplified method for predicting photovoltaic array output”, Solar Energy,vol. 27, pp.555–560.
  • [18] Muzathik A. M., (2014). Photovoltaic modules operating temperature estimation using a simple correlation, International Journal of Energy Engineering, vol. 4, Iss.4, pp. 151-158
  • [19] Duffie J.A., Beckman W.A., (1991). Solar Engineering Thermal Process. Wiley-Interscience, New York.
  • [20] Vasisht M. S., Srinivasan J., Ramasesha S.K., (2016). Performance of solar photovoltaic installations: Effect of seasonal variations, Solar Energy 131: 39-46
  • [21] Klein, S. A., (1977). Calculation of Monthly Average Insolation on Tilted Surfaces, Solar Energy, 19, 325
Year 2021, Volume: 12 Issue: 1, 69 - 77, 13.01.2021
https://doi.org/10.24012/dumf.860242

Abstract

References

  • [1] Green, M. A. et al. (2019). Solar cell efficiency tables (Version 53). Prog Photovolt Res Appl., 27: 3– 12.
  • [2] https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/Turkiye-Gunluk-Guneslenme-Suresi.pdf
  • [3] https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/Turkiye-Yillik-G%C3%BCnes-Radyasyonu.pdf
  • [4] Ordonez J., Jadraque E., Alegre J., ve Martinez G., (2010). Analysis of the Photovoltaic Solar Energy Capacity of Residential Rooftops in Andalusia (Spain), Renewable and Sustainable Energy Reviews,vol.14, pp.2122–30
  • [5] Shukla A. K., Sudhakar K., Baredar P., (2016). Simulation and performance analysis of 110 kWp grid-connected photovoltaic system for residential building in India: A comparativeanalysis of various PV technology, Energy Reports, vol.2, pp.82–88
  • [6] Wittkopf S., Valliappan S., Liu L., Ang K. S., Cheng S. C. J., (2012). Analytical performance monitoring of a 142.5 kWp grid connected rooftop BIPV system in Singapore, Renew. Energy,vol.47, pp.9–20.
  • [7] Carr A., Pryor T., (2004). A comparison of the performance of different PV module types in temperate climates, J Solar Energy, 285: 76.
  • [8] Ghazali M. A. and Abdul Rahman A.M., (2012). The Performance of Three Different Solar Panels for Solar Electricity Applying Solar Tracking Device under the Malaysian Climate Condition, Energy and Environment Research, 2:1
  • [9] Sharma V., Kumar A., Sastry O.S., Chandel S.S., (2013). Performance assessment of different solar photovoltaic technologies under similar outdoor conditions, Energy, vol. 58, pp.511-518
  • [10] Baharwani V., Meena N., Sharma A., Stephen R. B., Mohanty P., (2015). Comparative Performance Assessment of different Solar PV Module Technologies, International Journal of Innovations in Engineering and Technology, vol. 5 Issue 1
  • [11] Ferrada P., Araya F., Marzo A., Fuentealba E., (2015). Performance analysis of photovoltaic systems of two different technologies in a coastal desert climate zone of Chile, Solar Energy, vol. 114, pp. 356–363
  • [12] Chukwu G. U., Chigbo N. I., Onyenonachi F. C., Udoinyang I. E., (2016) Comparative Study of Photovoltaic Modules and Their Performance in the Tropics: A Case Study in Nigeria, International Journal of Innovative Environmental Studies Research, 4(4):21-28
  • [13] Özcan, Ö , İzgı̇, E . (2020). Şebekeye Bağlı Fotovoltaik Çatı Sisteminin Karşılaştırmalı Performans Analizi . Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi , 23 (3) , 127-140 .
  • [14] Üçgül, İ., Tüysüzoğlu, E.,Yakut, M. Z. (2014) PV Çatı Uygulaması için Enerji Hesaplaması ve Ekonomik Analizi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 18(2), 1-6
  • [15] Cristofari C., Poggi P., Notton G., Muselli M. Thermal modeling of a photovoltaic module. In: Proceedings of Sixth IASTED International Conference on ‘‘Modeling, Simulation, and Optimization”, 2006. “September 11–13, Gaborone, Botswana, pp. 273–278.
  • [16] Skoplaki E. and Palyvos J. A., (2009). On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/ power correlations, Solar Energy, vol. 83, pp. 614-624
  • [17] Evans D.L., 1981. “Simplified method for predicting photovoltaic array output”, Solar Energy,vol. 27, pp.555–560.
  • [18] Muzathik A. M., (2014). Photovoltaic modules operating temperature estimation using a simple correlation, International Journal of Energy Engineering, vol. 4, Iss.4, pp. 151-158
  • [19] Duffie J.A., Beckman W.A., (1991). Solar Engineering Thermal Process. Wiley-Interscience, New York.
  • [20] Vasisht M. S., Srinivasan J., Ramasesha S.K., (2016). Performance of solar photovoltaic installations: Effect of seasonal variations, Solar Energy 131: 39-46
  • [21] Klein, S. A., (1977). Calculation of Monthly Average Insolation on Tilted Surfaces, Solar Energy, 19, 325
There are 21 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Erdal Yıldırım

Mehmet A. Aktacir This is me

Publication Date January 13, 2021
Submission Date June 17, 2020
Published in Issue Year 2021 Volume: 12 Issue: 1

Cite

IEEE E. Yıldırım and M. A. Aktacir, “Çatı Üstü PV Elektrik Üretim Potansiyelinin Belirlenmesi: Şanlıurfa Örneği”, DUJE, vol. 12, no. 1, pp. 69–77, 2021, doi: 10.24012/dumf.860242.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456