Research Article
BibTex RIS Cite

Dental implantlar için farklı yüzey modifikasyon tekniklerinin titanyumun yüzey özelliklerine etkilerinin karşılaştırılması

Year 2023, Volume: 14 Issue: 3, 449 - 454, 30.09.2023
https://doi.org/10.24012/dumf.1284880

Abstract

Dental implantlarda en fazla kullanılan malzeme olan titanyumun yüzey morfolojisinin geliştirilmesi konusu birçok araştırmacının ve üretici firmaların üzerinde çalıştığı önemli konulardan biridir. Titanyumun biyouyumluluğu, üstün mekanik özellikleri, korozyon direnci ve osseointegrasyondaki başarısı biyomedikal uygulamalarda yoğun olarak kullanılmasının sebeplerindendir. Bu konuda yürütülen çalışmalar, implantın kemik ile olan etkileşiminde yüzey morfolijisinin doğrudan etkili olduğunu göstermiştir. Aynı zamanda implant malzemenin yüzey pürüzlülüğü, kimyasal bileşimi ve ıslanabilirliği de iyileşme aşamasında önemli rol oynar. Bu çalışma kapsamında saf titanyuma; kumlama, dağlama ve iki farklı çözelti ve voltajda anotlama olmak üzere toplamda dört farklı yüzey modifikasyon işlemi uygulanmıştır. Yüzeyi işleme tabi tutulan titanyum numunelerin, osseointegrasyonda önemli rol oynayan özelliklerden olan yüzey morfolojisi, faz yapısı ve yüzey pürüzlülük değerleri incelenmiştir. Dört farklı yüzey uygulamasının sonucunda yüzey morfolojileri başta olmak üzere farklı yüzey pürüzlülük sonuçları ve faz yapıları gözlemlenmiştir.

References

  • [1] J. C. M. Souza et al., “Nano-scale modification of titanium implant surfaces to enhance osseointegration,” Acta Biomater, vol. 94, pp. 112–131, Aug. 2019, doi: 10.1016/J.ACTBIO.2019.05.045.
  • [2] M. Gajiwala et al., “Influence of surface modification of titanium implants on improving osseointegration: An in vitro study,” J Prosthet Dent, vol. 126, no. 3, pp. 405.e1-405.e7, Sep. 2021, doi: 10.1016/J.PROSDENT.2021.06.034.
  • [3] E. Ünal et al., “Saf Titanyum İmplantın Asit ve Alkali İşlemler ile Yüzey Modifikasyonu,” AKU J. Sci. Eng, vol. 15, pp. 37102–37108, 2015, doi: 10.5578/fmbd.10294.
  • [4] A. E. Medvedev, H. P. Ng, R. Lapovok, Y. Estrin, T. C. Lowe, and V. N. Anumalasetty, “Effect of bulk microstructure of commercially pure titanium on surface characteristics and fatigue properties after surface modification by sand blasting and acid-etching,” J Mech Behav Biomed Mater, vol. 57, pp. 55–68, Apr. 2016, doi: 10.1016/J.JMBBM.2015.11.035.
  • [5] C. Vasak et al., “Early bone apposition to hydrophilic and hydrophobic titanium implant surfaces: a histologic and histomorphometric study in minipigs,” Wiley Online Library, vol. 25, no. 12, pp. 1378–1385, Dec. 2013, doi: 10.1111/clr.12277.
  • [6] B. Chrcanovic et al., “Factors influencing early dental implant failures,” journals.sagepub.com, vol. 95, no. 9, pp. 995–1002, Aug. 2016, doi: 10.1177/0022034516646098.
  • [7] B. Klein, MO; Al-Nawas, “For which clinical indications in dental implantology is the use of bone substitute materials scientifically substantiated?,” Mar. 2011.
  • [8] K. Y. Hung, Y. C. Lin, and H. P. Feng, “The effects of acid etching on the nanomorphological surface characteristics and activation energy of titanium medical materials,” Materials, vol. 10, no. 10, Oct. 2017, doi: 10.3390/MA10101164.
  • [9] E. M. Lotz, M. B. Berger, Z. Schwartz, and B. D. Boyan, “Regulation of osteoclasts by osteoblast lineage cells depends on titanium implant surface properties,” Acta Biomater, vol. 68, pp. 296–307, Mar. 2018, doi: 10.1016/J.ACTBIO.2017.12.039.
  • [10] M. Mallaiah, M. Manjaiah, and R. F. Laubscher, “A review of the surface modifications of titanium alloys for biomedical applications,” researchgate.net, vol. 51, no. 2, pp. 181–193, 2017, doi: 10.17222/mit.2015.348.
  • [11] A. Butt et al., “A Novel Investigation of the Formation of Titanium Oxide Nanotubes on Thermally Formed Oxide of Ti-6Al-4V,” Journal of Oral Implantology, vol. 41, no. 5, pp. 523–531, Oct. 2015, doi: 10.1563/AAID-JOI-D-13-00340.
  • [12] Q. Wang et al., “Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications,” Int J Nanomedicine, vol. 12, pp. 151–165, 2017, doi: 10.2147/IJN.S117498.
  • [13] C. Ferreira, J. Babu, A. Hamlekhan, S. Patel, and T. Shokuhfar, “Efficiency of Nanotube Surface–Treated Dental Implants Loaded with Doxycycline on Growth Reduction of Porphyromonas gingivalis,” Int J Oral Maxillofac Implants, vol. 32, no. 2, pp. 322–328, Mar. 2017, doi: 10.11607/JOMI.4975.
  • [14] S. A. Alves et al., “Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface,” Appl Surf Sci, vol. 399, pp. 682–701, Mar. 2017, doi: 10.1016/J.APSUSC.2016.12.105.
  • [15] E. Beltrán-Partida et al., “Disinfection of titanium dioxide nanotubes using super-oxidized water decrease bacterial viability without disrupting osteoblast behavior,” Materials Science and Engineering C, vol. 60, pp. 239–245, Mar. 2016, doi: 10.1016/J.MSEC.2015.11.042.
  • [16] J. Grotberg et al., “Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V,” Materials Science and Engineering C, vol. 59, pp. 677–689, Feb. 2016, doi: 10.1016/J.MSEC.2015.10.056.
  • [17] S. A. Alves et al., “Synthesis of calcium-phosphorous doped TiO 2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface,” Appl Surf Sci, vol. 399, pp. 682–701, Mar. 2017, doi: 10.1016/J.APSUSC.2016.12.105.
  • [18] M. K. Ji et al., “Effects on antibacterial activity and osteoblast viability of non-thermal atmospheric pressure plasma and heat treatments of tio2 nanotubes. Journal of Nanoscience and Nanotechnology,” ingentaconnect.com, vol. 17, no. 4, pp. 2312–2315, 2017, doi: https://doi.org/10.1166/jnn.2017.13328.
  • [19] W. Liu et al., “Optimizing stem cell functions and antibacterial properties of TiO2 nanotubes incorporated with ZnO nanoparticles: Experiments and modeling,” Int J Nanomedicine, vol. 10, pp. 1997–2019, Mar. 2015, doi: 10.2147/IJN.S74418.
  • [20] J. Grotberg et al., “Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V,” Materials Science and Engineering C, vol. 59, pp. 677–689, Feb. 2016, doi: 10.1016/J.MSEC.2015.10.056.
  • [21] A. Butt et al., “A novel investigation of the formation of titanium oxide nanotubes on thermally formed oxide of Ti-6Al-4V,” Journal of Oral Implantology, vol. 41, no. 5, pp. 523–531, Oct. 2015, doi: 10.1563/AAID-JOI-D-13-00340.
  • [22] J. Pan, D. Thierry, and C. Leygraf, “Hydrogen peroxide toward enhanced oxide growth on titanium in PBS solution: Blue coloration and clinical relevance,” J Biomed Mater Res, vol. 30, pp. 393–402, 1996, doi: 10.1002/(SICI)1097-4636(199603)30:3.
  • [23] S. R. Fardi, H. Khorsand, R. Askarnia, R. Pardehkhorram, and E. Adabifiroozjaei, “Improvement of biomedical functionality of titanium by ultrasound-assisted electrophoretic deposition of hydroxyapatite-graphene oxide nanocomposites,” Ceram Int, vol. 46, no. 11, pp. 18297–18307, Aug. 2020, doi: 10.1016/J.CERAMINT.2020.05.049.
  • [24] N. Karimi, M. Kharaziha, and K. Raeissi, “Electrophoretic deposition of chitosan reinforced graphene oxide-hydroxyapatite on the anodized titanium to improve biological and electrochemical characteristics,” Materials Science and Engineering C, vol. 98, no. May 2018, pp. 140–152, 2019, doi: 10.1016/j.msec.2018.12.136.
  • [25] Ö. Sıcakyüz, “Titanyum ve Titanyum Alaşımlarının Anodik Oksidasyon Davranışı Ve Karakterizasyonu,” Yükseklisans Tezi, İstanbul Teknik Üniversitesi, 2007. Accessed: Aug. 14, 2022. [Online]. Available: http://hdl.handle.net/11527/9303
  • [26] C. Elias, Y. Oshida, and J. Lima, “Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque,” J Mech Behav Biomed Mater, vol. 1, no. 3, pp. 234–242, 2008, doi: https://doi.org/10.1016/j.jmbbm.2007.12.002.
  • [27] John Martin, Materials for Engineering Third Edition. Woodhead Publishing, 2006. Accessed: Aug. 30, 2023. [Online]. Available: https://www.google.com.tr/books/edition/Materials_for_Engineering/ALxQAwAAQBAJ?hl=tr&gbpv=1&dq=materials+in+engineering+martin&printsec=frontcover
  • [28] B. Coşkun, F.-E. Fakültesi, and K. Üniversitesi, “İki Bileşenli Metal Oksit Yarı iletkenlerin Üretilmesi ve Optik Özelliklerinin Belirlenmesi,” 2020. Accessed: Mar. 23, 2023. [Online]. Available: https://dergipark.org.tr/en/pub/fumbd/article/686474
  • [29] J. Liu, Z. Y. Liu, T. R. Zhang, J. Zhai, and L. Jiang, “Low-temperature crystallization of anodized TiO2 nanotubes at the solid-gas interface and their photoelectrochemical properties,” Nanoscale, vol. 5, no. 13, pp. 6139–6144, 2013, doi: 10.1039/c3nr01286g.
Year 2023, Volume: 14 Issue: 3, 449 - 454, 30.09.2023
https://doi.org/10.24012/dumf.1284880

Abstract

References

  • [1] J. C. M. Souza et al., “Nano-scale modification of titanium implant surfaces to enhance osseointegration,” Acta Biomater, vol. 94, pp. 112–131, Aug. 2019, doi: 10.1016/J.ACTBIO.2019.05.045.
  • [2] M. Gajiwala et al., “Influence of surface modification of titanium implants on improving osseointegration: An in vitro study,” J Prosthet Dent, vol. 126, no. 3, pp. 405.e1-405.e7, Sep. 2021, doi: 10.1016/J.PROSDENT.2021.06.034.
  • [3] E. Ünal et al., “Saf Titanyum İmplantın Asit ve Alkali İşlemler ile Yüzey Modifikasyonu,” AKU J. Sci. Eng, vol. 15, pp. 37102–37108, 2015, doi: 10.5578/fmbd.10294.
  • [4] A. E. Medvedev, H. P. Ng, R. Lapovok, Y. Estrin, T. C. Lowe, and V. N. Anumalasetty, “Effect of bulk microstructure of commercially pure titanium on surface characteristics and fatigue properties after surface modification by sand blasting and acid-etching,” J Mech Behav Biomed Mater, vol. 57, pp. 55–68, Apr. 2016, doi: 10.1016/J.JMBBM.2015.11.035.
  • [5] C. Vasak et al., “Early bone apposition to hydrophilic and hydrophobic titanium implant surfaces: a histologic and histomorphometric study in minipigs,” Wiley Online Library, vol. 25, no. 12, pp. 1378–1385, Dec. 2013, doi: 10.1111/clr.12277.
  • [6] B. Chrcanovic et al., “Factors influencing early dental implant failures,” journals.sagepub.com, vol. 95, no. 9, pp. 995–1002, Aug. 2016, doi: 10.1177/0022034516646098.
  • [7] B. Klein, MO; Al-Nawas, “For which clinical indications in dental implantology is the use of bone substitute materials scientifically substantiated?,” Mar. 2011.
  • [8] K. Y. Hung, Y. C. Lin, and H. P. Feng, “The effects of acid etching on the nanomorphological surface characteristics and activation energy of titanium medical materials,” Materials, vol. 10, no. 10, Oct. 2017, doi: 10.3390/MA10101164.
  • [9] E. M. Lotz, M. B. Berger, Z. Schwartz, and B. D. Boyan, “Regulation of osteoclasts by osteoblast lineage cells depends on titanium implant surface properties,” Acta Biomater, vol. 68, pp. 296–307, Mar. 2018, doi: 10.1016/J.ACTBIO.2017.12.039.
  • [10] M. Mallaiah, M. Manjaiah, and R. F. Laubscher, “A review of the surface modifications of titanium alloys for biomedical applications,” researchgate.net, vol. 51, no. 2, pp. 181–193, 2017, doi: 10.17222/mit.2015.348.
  • [11] A. Butt et al., “A Novel Investigation of the Formation of Titanium Oxide Nanotubes on Thermally Formed Oxide of Ti-6Al-4V,” Journal of Oral Implantology, vol. 41, no. 5, pp. 523–531, Oct. 2015, doi: 10.1563/AAID-JOI-D-13-00340.
  • [12] Q. Wang et al., “Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications,” Int J Nanomedicine, vol. 12, pp. 151–165, 2017, doi: 10.2147/IJN.S117498.
  • [13] C. Ferreira, J. Babu, A. Hamlekhan, S. Patel, and T. Shokuhfar, “Efficiency of Nanotube Surface–Treated Dental Implants Loaded with Doxycycline on Growth Reduction of Porphyromonas gingivalis,” Int J Oral Maxillofac Implants, vol. 32, no. 2, pp. 322–328, Mar. 2017, doi: 10.11607/JOMI.4975.
  • [14] S. A. Alves et al., “Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface,” Appl Surf Sci, vol. 399, pp. 682–701, Mar. 2017, doi: 10.1016/J.APSUSC.2016.12.105.
  • [15] E. Beltrán-Partida et al., “Disinfection of titanium dioxide nanotubes using super-oxidized water decrease bacterial viability without disrupting osteoblast behavior,” Materials Science and Engineering C, vol. 60, pp. 239–245, Mar. 2016, doi: 10.1016/J.MSEC.2015.11.042.
  • [16] J. Grotberg et al., “Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V,” Materials Science and Engineering C, vol. 59, pp. 677–689, Feb. 2016, doi: 10.1016/J.MSEC.2015.10.056.
  • [17] S. A. Alves et al., “Synthesis of calcium-phosphorous doped TiO 2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface,” Appl Surf Sci, vol. 399, pp. 682–701, Mar. 2017, doi: 10.1016/J.APSUSC.2016.12.105.
  • [18] M. K. Ji et al., “Effects on antibacterial activity and osteoblast viability of non-thermal atmospheric pressure plasma and heat treatments of tio2 nanotubes. Journal of Nanoscience and Nanotechnology,” ingentaconnect.com, vol. 17, no. 4, pp. 2312–2315, 2017, doi: https://doi.org/10.1166/jnn.2017.13328.
  • [19] W. Liu et al., “Optimizing stem cell functions and antibacterial properties of TiO2 nanotubes incorporated with ZnO nanoparticles: Experiments and modeling,” Int J Nanomedicine, vol. 10, pp. 1997–2019, Mar. 2015, doi: 10.2147/IJN.S74418.
  • [20] J. Grotberg et al., “Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V,” Materials Science and Engineering C, vol. 59, pp. 677–689, Feb. 2016, doi: 10.1016/J.MSEC.2015.10.056.
  • [21] A. Butt et al., “A novel investigation of the formation of titanium oxide nanotubes on thermally formed oxide of Ti-6Al-4V,” Journal of Oral Implantology, vol. 41, no. 5, pp. 523–531, Oct. 2015, doi: 10.1563/AAID-JOI-D-13-00340.
  • [22] J. Pan, D. Thierry, and C. Leygraf, “Hydrogen peroxide toward enhanced oxide growth on titanium in PBS solution: Blue coloration and clinical relevance,” J Biomed Mater Res, vol. 30, pp. 393–402, 1996, doi: 10.1002/(SICI)1097-4636(199603)30:3.
  • [23] S. R. Fardi, H. Khorsand, R. Askarnia, R. Pardehkhorram, and E. Adabifiroozjaei, “Improvement of biomedical functionality of titanium by ultrasound-assisted electrophoretic deposition of hydroxyapatite-graphene oxide nanocomposites,” Ceram Int, vol. 46, no. 11, pp. 18297–18307, Aug. 2020, doi: 10.1016/J.CERAMINT.2020.05.049.
  • [24] N. Karimi, M. Kharaziha, and K. Raeissi, “Electrophoretic deposition of chitosan reinforced graphene oxide-hydroxyapatite on the anodized titanium to improve biological and electrochemical characteristics,” Materials Science and Engineering C, vol. 98, no. May 2018, pp. 140–152, 2019, doi: 10.1016/j.msec.2018.12.136.
  • [25] Ö. Sıcakyüz, “Titanyum ve Titanyum Alaşımlarının Anodik Oksidasyon Davranışı Ve Karakterizasyonu,” Yükseklisans Tezi, İstanbul Teknik Üniversitesi, 2007. Accessed: Aug. 14, 2022. [Online]. Available: http://hdl.handle.net/11527/9303
  • [26] C. Elias, Y. Oshida, and J. Lima, “Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque,” J Mech Behav Biomed Mater, vol. 1, no. 3, pp. 234–242, 2008, doi: https://doi.org/10.1016/j.jmbbm.2007.12.002.
  • [27] John Martin, Materials for Engineering Third Edition. Woodhead Publishing, 2006. Accessed: Aug. 30, 2023. [Online]. Available: https://www.google.com.tr/books/edition/Materials_for_Engineering/ALxQAwAAQBAJ?hl=tr&gbpv=1&dq=materials+in+engineering+martin&printsec=frontcover
  • [28] B. Coşkun, F.-E. Fakültesi, and K. Üniversitesi, “İki Bileşenli Metal Oksit Yarı iletkenlerin Üretilmesi ve Optik Özelliklerinin Belirlenmesi,” 2020. Accessed: Mar. 23, 2023. [Online]. Available: https://dergipark.org.tr/en/pub/fumbd/article/686474
  • [29] J. Liu, Z. Y. Liu, T. R. Zhang, J. Zhai, and L. Jiang, “Low-temperature crystallization of anodized TiO2 nanotubes at the solid-gas interface and their photoelectrochemical properties,” Nanoscale, vol. 5, no. 13, pp. 6139–6144, 2013, doi: 10.1039/c3nr01286g.
There are 29 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Mustafa Kırman 0000-0002-0138-5606

Tuncay Dikici 0000-0002-7004-9788

Halit Doğan 0000-0001-9263-8068

Early Pub Date September 30, 2023
Publication Date September 30, 2023
Submission Date May 4, 2023
Published in Issue Year 2023 Volume: 14 Issue: 3

Cite

IEEE M. Kırman, T. Dikici, and H. Doğan, “Dental implantlar için farklı yüzey modifikasyon tekniklerinin titanyumun yüzey özelliklerine etkilerinin karşılaştırılması”, DUJE, vol. 14, no. 3, pp. 449–454, 2023, doi: 10.24012/dumf.1284880.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456