Today, with the increasing interest in technology, very useful studies are carried out in the field of image processing. Image technologies are also used in many fields such as security, defense, medicine, and industry. In this study, age, gender, and ethnicity were found in the image by using different deep learning techniques and by building our own model in CNN. The 23705 images taken from the csv file named Face Data taken from Kaggle were categorized as different gender, race, and age within the application and the accuracy and losses of the results were transferred with graphs. In addition, by creating an interface with the help of the Python flask library, the results of the snapshot taken from the camera (age, gender, and race) can also be found. Out of the 23705 images, approximately 12000 male and 11000 female profiles were obtained. These profiles were classified according to 5 different genetics specified in the dataset. The genetics in the application (0 represented White, 1 represented Black, 2 represented Asian, 3 represented Indian, 4 represented Others.) The most difficult part of this study is that the picture changes depending on many factors such as posture, pose angle, brightness, and resolution at the time of shooting..
Today, with the increasing interest in technology, very useful studies are carried out in the field of image processing. Image technologies are also used in many fields such as security, defense, medicine, and industry. In this study, age, gender, and ethnicity were found in the image by using different deep learning techniques and by building our own model in CNN. The 23705 images taken from the csv file named Face Data taken from Kaggle were categorized as different gender, race, and age within the application and the accuracy and losses of the results were transferred with graphs. In addition, by creating an interface with the help of the Python flask library, the results of the snapshot taken from the camera (age, gender, and race) can also be found. Out of the 23705 images, approximately 12000 male and 11000 female profiles were obtained. These profiles were classified according to 5 different genetics specified in the dataset. The genetics in the application (0 represented White, 1 represented Black, 2 represented Asian, 3 represented Indian, 4 represented Others.) The most difficult part of this study is that the picture changes depending on many factors such as posture, pose angle, brightness, and resolution at the time of shooting..
Primary Language | English |
---|---|
Subjects | Machine Learning (Other), Computer Software |
Journal Section | Articles |
Authors | |
Early Pub Date | March 29, 2024 |
Publication Date | March 29, 2024 |
Submission Date | October 24, 2023 |
Acceptance Date | February 10, 2024 |
Published in Issue | Year 2024 Volume: 15 Issue: 1 |