Review
BibTex RIS Cite

Yapay Zekanın Botanik Bahçelerindeki Rolü: Bitki Tanımlamanın Geliştirilmesi

Year 2024, Volume: 3 Issue: 2, 23 - 38, 28.12.2024

Abstract

Bu derleme, botanik bahçelerinde yapay zekanın (YZ) potansiyelini, özellikle bitki türlerinin tanımlanmasına odaklanarak incelemektedir. Çalışmanın temel amacı, Çekirdekli Sinir Ağları (CNN'ler) gibi YZ modellerinin çevresel değişkenlik, veri sınırlamaları ve tür çeşitliliği ile ilgili zorlukları ele almadaki etkinliğini değerlendirmektir. Yöntem, botanik bahçelerinde bitki tanımlamasında YZ uygulamalarını inceleyen mevcut literatürün sistematik bir analizini içermektedir. Bulgular, YZ'nin yaygın bitki türleri için genellikle %90'ı aşan yüksek doğruluk oranlarına ulaştığını, ancak nadir veya tehlike altındaki türlerde yetersiz ve tutarsız eğitim verileri nedeniyle önemli zorluklarla karşılaştığını göstermektedir. Aydınlatma koşulları, mevsimsel değişiklikler ve karışık tür ortamları gibi çevresel faktörler YZ performansını daha da etkilemekte ve gelişmiş ön işleme teknikleri ile çok modlu veri entegrasyonuna olan ihtiyacı vurgulamaktadır. Bu derleme ayrıca botanik bahçelerinde YZ uygulamalarının etik etkilerini, özellikle veri gizliliği ve biyolojik çeşitliliğin korunması bağlamında ele almaktadır. Hassas verilerin kötüye kullanımını önlemek için risklerin azaltılmasının önemini vurgularken, YZ araçlarının geleneksel koruma yöntemlerini tamamlaması gerektiğini savunmaktadır. Sonuç olarak, YZ'nin botanik bahçelerinde bitki tanımlama ve biyolojik çeşitlilik yönetimini geliştirme konusunda dönüştürücü bir potansiyele sahip olduğu vurgulanmaktadır. Ancak, bu potansiyelin etkili ve sürdürülebilir bir şekilde uygulanabilmesi için YZ teknolojilerinde sürekli ilerleme, iş birliğine dayalı yönetişim modelleri ve sağlam etik çerçevelere ihtiyaç duyulmaktadır.

References

  • August, T. A., Pescott, O. L., Joly, A., & Bonnet, P. (2020). AI naturalists might hold the key to unlocking biodiversity data in social media imagery. Patterns, 1(7), 100116.
  • Barré, P., Stöver, B. C., Müller, K. F., & Steinhage, V. (2017). LeafNet: A computer vision system for automatic plant species identification. Ecological Informatics, 40, 50-56.
  • Carranza-Rojas, J., Goeau, H., Bonnet, P., Mata-Montero, E., & Joly, A. (2017). Going deeper in the automated identification of herbarium specimens. BMC Evolutionary Biology, 17(1), 1-14.
  • Chen, Y., Huang, Y., Zhang, Z., Wang, Z., Liu, B., Liu, C., Huang, C., Dong, S., Pu, X., Wan, F., Qiao, X., Qian, W. (2023). Plant image recognition with deep learning: A review. Computers and Electronics in Agriculture, 212, 108072.
  • Clark, J. Y., Corney, D., & Tang, H. L. (2012). Automated plant identification using artificial neural networks. 2012 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), San Diego, CA, USA, 343-348.
  • Dawson, W., Mndolwa, A., Burslem, D., & Hulme, P. (2008). Assessing the risks of plant invasions arising from collections in tropical botanical gardens. Biodiversity and Conservation, 17, 1979-1995.
  • Gan, Y., Hou, C., Zhou, T., & Xu, S. (2011). Plant identification based on artificial intelligence. Advanced Materials Research, 255-260, 2286-2290.
  • Govindaraj, V. (2024). Modernizing agricultural workflows using artificial intelligence and deep learning: Enhancing plant species identification. World Journal of Advanced Research and Reviews. Hardwick, K., Fiedler, P., Lee, L., Pavlik, B., Hobbs, R., Aronson, J., Bidartondo, M., Black, E., Coates, D., Daws, M., Dixon, K., Elliott, S., Ewing, K., Gann, G. D., Gibbons, D., Gratzfeld, J., Hamilton, M., Hardman, D., Harris, J. A., ... Hopper, S. (2011). The role of botanic gardens in the science and practice of ecological restoration. Conservation Biology, 25(2), 265-275.
  • Jones, H. (2020). Artificial Intelligence for plant identification on smartphones and tablets. BSBI News, 144, 34-40.
  • Labrighli, K., Moujahdi, C., Oualidi, J. E., & Rhazi, L. (2022). Artificial intelligence for automated plant species identification: A review. International Journal of Advanced Computer Science and Applications, 13(10).
  • Picek, L., Šulc, M., Patel, Y., & Matas, J. (2022). Plant recognition by AI: Deep neural nets, transformers, and kNN in deep embeddings. Frontiers in plant science, 13, 787527.
  • Rajeesh, M., & Ranjith Ram, A. (2020). Automatic plant recognition: A review. Proceedings of the International Conference on Systems, Energy & Environment (ICSEE).
  • Rankothge, W., Dissanayake, D., Gunathilaka, U. V. K. T., Gunarathna, S., Mudalige, C. M., & Thilakumara, R. P. (2013). Plant recognition system based on Neural Networks. International Conference on Advances in Technology and Engineering (ICATE), 1-4.
  • Sun, Y., Liu, Y., Wang, G., & Zhang, H. (2017). Deep Learning for Plant Identification in Natural Environment. Computational Intelligence and Neuroscience, 1, 7361042.
  • Ubbens, J. R., & Stavness, I. (2017). Deep plant phenomics: A deep learning platform for complex plant phenotyping tasks. Frontiers In Plant Science, 8, 1190.
  • Vidya, H. A., Murthy, M. S. N., & Thara, D. K. (2024). Leveraging deep learning for identification of medicinal plant species. International Conference on Data Science and Network Security (ICDSNS), Tiptur, India, 1-9.
  • Wäldchen, J., & Mäder, P. (2018). Plant species identification using computer vision techniques: a systematic literature review. Archives of Computational Methods in Engineering, 25(2), 507-543.
  • Xie, G., Xuan, J., Liu, B., Luo, Y., Wang, Y., Zou, X., & Li, M. (2024). FlowerMate 2.0: Identifying plants in China with artificial intelligence. The Innovation, 5(4), 100636.

The Role of Artificial Intelligence in Botanical Gardens: Enhancing Plant Identification

Year 2024, Volume: 3 Issue: 2, 23 - 38, 28.12.2024

Abstract

This review explores the potential of artificial intelligence (AI) in botanical gardens, with a particular focus on plant species identification. The primary objective is to evaluate the effectiveness of AI models, such as Convolutional Neural Networks (CNNs), in addressing challenges related to environmental variability, data limitations, and species diversity. The methodology involves a systematic analysis of existing literature, assessing studies that apply AI to plant identification within botanical gardens. Findings reveal that AI achieves high accuracy rates for common plant species, often exceeding 90%, but faces significant challenges with rare or endangered species due to insufficient and inconsistent training data. Environmental factors, including lighting conditions, seasonal changes, and mixed-species environments, further impact AI performance, emphasizing the need for advanced preprocessing techniques and multi-modal data integration. The review also examines the ethical implications of AI applications in botanical gardens, particularly regarding data privacy and the conservation of biodiversity. It underscores the importance of mitigating risks associated with sensitive data misuse while ensuring AI tools complement traditional conservation methods. The conclusion highlights the transformative potential of AI to enhance plant identification and biodiversity management in botanical gardens. However, it calls for ongoing advancements in AI technologies, collaborative governance models, and robust ethical frameworks to ensure effective and sustainable implementation.

References

  • August, T. A., Pescott, O. L., Joly, A., & Bonnet, P. (2020). AI naturalists might hold the key to unlocking biodiversity data in social media imagery. Patterns, 1(7), 100116.
  • Barré, P., Stöver, B. C., Müller, K. F., & Steinhage, V. (2017). LeafNet: A computer vision system for automatic plant species identification. Ecological Informatics, 40, 50-56.
  • Carranza-Rojas, J., Goeau, H., Bonnet, P., Mata-Montero, E., & Joly, A. (2017). Going deeper in the automated identification of herbarium specimens. BMC Evolutionary Biology, 17(1), 1-14.
  • Chen, Y., Huang, Y., Zhang, Z., Wang, Z., Liu, B., Liu, C., Huang, C., Dong, S., Pu, X., Wan, F., Qiao, X., Qian, W. (2023). Plant image recognition with deep learning: A review. Computers and Electronics in Agriculture, 212, 108072.
  • Clark, J. Y., Corney, D., & Tang, H. L. (2012). Automated plant identification using artificial neural networks. 2012 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), San Diego, CA, USA, 343-348.
  • Dawson, W., Mndolwa, A., Burslem, D., & Hulme, P. (2008). Assessing the risks of plant invasions arising from collections in tropical botanical gardens. Biodiversity and Conservation, 17, 1979-1995.
  • Gan, Y., Hou, C., Zhou, T., & Xu, S. (2011). Plant identification based on artificial intelligence. Advanced Materials Research, 255-260, 2286-2290.
  • Govindaraj, V. (2024). Modernizing agricultural workflows using artificial intelligence and deep learning: Enhancing plant species identification. World Journal of Advanced Research and Reviews. Hardwick, K., Fiedler, P., Lee, L., Pavlik, B., Hobbs, R., Aronson, J., Bidartondo, M., Black, E., Coates, D., Daws, M., Dixon, K., Elliott, S., Ewing, K., Gann, G. D., Gibbons, D., Gratzfeld, J., Hamilton, M., Hardman, D., Harris, J. A., ... Hopper, S. (2011). The role of botanic gardens in the science and practice of ecological restoration. Conservation Biology, 25(2), 265-275.
  • Jones, H. (2020). Artificial Intelligence for plant identification on smartphones and tablets. BSBI News, 144, 34-40.
  • Labrighli, K., Moujahdi, C., Oualidi, J. E., & Rhazi, L. (2022). Artificial intelligence for automated plant species identification: A review. International Journal of Advanced Computer Science and Applications, 13(10).
  • Picek, L., Šulc, M., Patel, Y., & Matas, J. (2022). Plant recognition by AI: Deep neural nets, transformers, and kNN in deep embeddings. Frontiers in plant science, 13, 787527.
  • Rajeesh, M., & Ranjith Ram, A. (2020). Automatic plant recognition: A review. Proceedings of the International Conference on Systems, Energy & Environment (ICSEE).
  • Rankothge, W., Dissanayake, D., Gunathilaka, U. V. K. T., Gunarathna, S., Mudalige, C. M., & Thilakumara, R. P. (2013). Plant recognition system based on Neural Networks. International Conference on Advances in Technology and Engineering (ICATE), 1-4.
  • Sun, Y., Liu, Y., Wang, G., & Zhang, H. (2017). Deep Learning for Plant Identification in Natural Environment. Computational Intelligence and Neuroscience, 1, 7361042.
  • Ubbens, J. R., & Stavness, I. (2017). Deep plant phenomics: A deep learning platform for complex plant phenotyping tasks. Frontiers In Plant Science, 8, 1190.
  • Vidya, H. A., Murthy, M. S. N., & Thara, D. K. (2024). Leveraging deep learning for identification of medicinal plant species. International Conference on Data Science and Network Security (ICDSNS), Tiptur, India, 1-9.
  • Wäldchen, J., & Mäder, P. (2018). Plant species identification using computer vision techniques: a systematic literature review. Archives of Computational Methods in Engineering, 25(2), 507-543.
  • Xie, G., Xuan, J., Liu, B., Luo, Y., Wang, Y., Zou, X., & Li, M. (2024). FlowerMate 2.0: Identifying plants in China with artificial intelligence. The Innovation, 5(4), 100636.
There are 18 citations in total.

Details

Primary Language English
Subjects Forest Botany
Journal Section Süs ve Tıbbi Bitkiler Botanik Bahçesi Dergisi 3(2)
Authors

Sevgi Akten Karakaya 0000-0001-9346-5795

Publication Date December 28, 2024
Submission Date August 16, 2024
Acceptance Date December 23, 2024
Published in Issue Year 2024 Volume: 3 Issue: 2

Cite

APA Akten Karakaya, S. (2024). The Role of Artificial Intelligence in Botanical Gardens: Enhancing Plant Identification. Düzce Üniversitesi Süs Ve Tıbbi Bitkiler Botanik Bahçesi Dergisi, 3(2), 23-38.
AMA Akten Karakaya S. The Role of Artificial Intelligence in Botanical Gardens: Enhancing Plant Identification. DUSTIBID. December 2024;3(2):23-38.
Chicago Akten Karakaya, Sevgi. “The Role of Artificial Intelligence in Botanical Gardens: Enhancing Plant Identification”. Düzce Üniversitesi Süs Ve Tıbbi Bitkiler Botanik Bahçesi Dergisi 3, no. 2 (December 2024): 23-38.
EndNote Akten Karakaya S (December 1, 2024) The Role of Artificial Intelligence in Botanical Gardens: Enhancing Plant Identification. Düzce Üniversitesi Süs ve Tıbbi Bitkiler Botanik Bahçesi Dergisi 3 2 23–38.
IEEE S. Akten Karakaya, “The Role of Artificial Intelligence in Botanical Gardens: Enhancing Plant Identification”, DUSTIBID, vol. 3, no. 2, pp. 23–38, 2024.
ISNAD Akten Karakaya, Sevgi. “The Role of Artificial Intelligence in Botanical Gardens: Enhancing Plant Identification”. Düzce Üniversitesi Süs ve Tıbbi Bitkiler Botanik Bahçesi Dergisi 3/2 (December 2024), 23-38.
JAMA Akten Karakaya S. The Role of Artificial Intelligence in Botanical Gardens: Enhancing Plant Identification. DUSTIBID. 2024;3:23–38.
MLA Akten Karakaya, Sevgi. “The Role of Artificial Intelligence in Botanical Gardens: Enhancing Plant Identification”. Düzce Üniversitesi Süs Ve Tıbbi Bitkiler Botanik Bahçesi Dergisi, vol. 3, no. 2, 2024, pp. 23-38.
Vancouver Akten Karakaya S. The Role of Artificial Intelligence in Botanical Gardens: Enhancing Plant Identification. DUSTIBID. 2024;3(2):23-38.