Review
BibTex RIS Cite
Year 2019, Volume: 12 Issue: 2, 149 - 156, 31.12.2019

Abstract

References

  • 1. Vijayaraghavan K, Ashokkumar T. (2017). Plant-mediated Biosynthesis of Metallic Nanoparticles: A Review of Literature, Factors Affecting Synthesis, Characterization Techniques and Applications. J Environ Chem Eng. 5(5): 4866–4883.
  • 2. Albanese A, Tang PS, Chan WC. (2012). The Effect of Nanoparticle Size, Shape, and Surface Chemistry in Biological Systems. Annu Rev Biomed Eng. 14: 1-16.
  • 3. Issa B, Obaidat I, Albiss BA, Haik Y. (2013). Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications. Int J Mol Sci. 14(11): 21266-21305.
  • 4. Somorjai GA, Li Y. (2011). Impact of Surface Chemistry. Proc Natl Acad Sci U S A. 108(3): 917–924.
  • 5. Manuja A, Kumar B, Singh RK. (2012). Nanotechnology Developments: Opportunities for Animal Health and Production. Nanotechnology Dev. 2: 17-25.
  • 6. Scott NR. (2007). Nanoscience in Veterinary Medicine. Vet Res Commun. 1: 139–144.
  • 7. Foss Hansen S, Larsen BH, Olsen SI, Baun A. (2009). Categorization Framework to Aid Hazard Identification of Nanomaterials. Nanotoxicology. 1(3): 243–250.
  • 8. Berkner S, Schwirn K, Voelker D. (2016). Nanopharmaceuticals: Tiny Challenges for The Environmental Risk Assessment of Pharmaceuticals. Environ Toxicol Chem. 35(4): 780–787.
  • 9. Troncarelli MZ, Brandão HM, Gern JC, Guimarães AS, Langoni H. (2013). Nanotechnology and Antimicrobials in Veterinary Medicine. In: Microbial pathogens and strategies for combating them: science, technology and education. Méndez-Vilas A. (eds). Cilt 1. s. 1-774. Formatex Research Center, Badajoz, Spain.
  • 10. Pesticides A, Authority VM. Nanotechnologies for Pesticides and Veterinary Medicines: Regulatory Considerations. Final Report. Erişim: https://apvma.gov.au/sites/default/files/publication/15626-nanotechnologies-pesticides-veterinary-medicines_regulatory-considerations_july2015.pdf Erişim tarihi: 06.07.2015
  • 11. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. (2008). Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles. Mol Pharm. 5(4): 505–515.
  • 12. Prabhu RH, Patravale VB, Joshi MD. (2015). Polymeric Nanoparticles for Targeted Treatment in Oncology: Current Insights. Int J Nanomedicine. 10: 1001-1018.
  • 13. Sekhon BS. (2012). Nanoprobes and Their Applications in Veterinary Medicine and Animal Health. Res J Nanosci Nanotechnol. 2: 1–16.
  • 14. Chakravarthi PV, Balaji SN. (2010). Applications of Nanotechnology in Veterinary Medicine. Vet. World. 3(10): 477-480.
  • 15. Papahadjopoulos D, Kimelberg HK. (1974). Phospholipid Vesicles (Liposomes) as Models for Biological Membranes: Their Properties and Interactions with Cholesterol and Proteins. Prog Surf Sci. 4: 141–144.
  • 16. Meena NS, Sahni YP, Thakur D, Singh RP. (2018). Applications of Nanotechnology in Veterinary Therapeutics. J Entomol Zool Stud. 6(2): 167–175.
  • 17. Jurj A, Braicu C, Pop LA, Tomuleasa C, Gherman CD, Berindan-Neagoe I. (2017). The New Era of Nanotechnology, an Alternative to Change Cancer Treatment. Drug Des Devel Ther. 11: 2871-2890
  • 18. Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ. (2008). Biological Applications of Gold Nanoparticles. Chem Soc Rev. 37: 1896–1908.
  • 19. Puvanakrishnan P, Park J, Chatterjee D, Krishnan S, Tunnell JW. (2012). In Vivo Tumor Targeting of Gold Nanoparticles: Effect of Particle Type and Dosing Strategy. Int J Nanomedicine. 7: 1251-1258.
  • 20. Sýkora D. et al. (2010). Application of Gold Nanoparticles in Separation Sciences. J Sep Sci. 33(3): 372–387.
  • 21. Torres-Chavolla E, Ranasinghe RJ, Alocilja EC. (2010). Characterization and Functionalization of Biogenic Gold Nanoparticles for Biosensing Enhancement. IEEE Trans Nanotechnol. 9: 533–538.
  • 22. Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB. (2007). Chitosan Reduced Gold Nanoparticles as Novel Carriers for Transmucosal Delivery of Insulin. Pharm Res. 24(8): 1415–1426.
  • 23. Huang Y, Li X, Liao Z, Zhang G, et al. (2007). A Randomized Comparative Trial Between Acticoat and SD-Ag in The Treatment of Residual Burn Wounds, Including Safety Analysis. Burns. 33(2): 161–166.
  • 24. Pollini M, Paladini F, Catalano M, et al. (2011). Antibacterial Coatings on Haemodialysis Catheters by Photochemical Deposition of Silver Nanoparticles. J Mater Sci Mater Med. 22(9): 2005–2012.
  • 25. Erci F, Koc R, Isıldak I. (2018). Green Synthesis of Silver Nanoparticles Using Thymbra Spicata L. Var. Spicata (Zahter) Aqueous Leaf Extract and Evaluation of Their Morphology-Dependent Antibacterial and Cytotoxic Activity. Artif Cells, Nanomedicine, Biotechnol. 46(1): 150–158.
  • 26. Erci F, Torlak E. (2019). Antimicrobial and Antibiofilm Activity of Green Synthesized Silver Nanoparticles by Using Aqueous Leaf Extract of Thymus Serpyllum. Sak Univ J Sci. 23(3): 333–339.
  • 27. Pankhurst QA, Connolly J, Jones SK, Dobson J. (2003). Applications of Magnetic Nanoparticles in Biomedicine. J Phys D Appl Phys. 36(13): R167-R181
  • 28. Altikatoglu M, Attar A, Erci F, Cristache CM, Isıldak I. (2017). Green Synthesis of Copper Oxide Nanoparticles Using Ocimum Basilicum Extrct and Their Antibacterial Activity. Fresenius Environ. Bull. 26(12A): 7832–7837.
  • 29. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F. (2006). Toxicological Impact Studies Based on Escherichia Coli Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium. Nano Lett. 6(4): 866–870.
  • 30. Mishra A, Swain RK, Mishra SK, Panda N, Sethy K. (2014). Growth Performance and Serum Biochemical Parameters as Affected by Bano Zinc Supplementation in Layer Chicks. Indian J Anim Nutr. 31(4): 384–388.
  • 31. Yang ZP, Sun LP. (2006). Effects of Nanometre ZnO on Growth Performance of Early Weaned Piglets. J Shanxi Agric Sci. 3: 577–588.
  • 32. Pasupuleti S, Alapati S, Ganapathy S, Anumolu G, Pully NR, Prakhya BM. (2012) Toxicity of Zinc Oxide Nanoparticles through Oral Route. Toxicol Ind Health. 28(8): 675–686.
  • 33. Rajendran D. (2013). Application of Nano Minerals in Animal Production System. Res J Biotechnol. 8(3): 1–3.
  • 34. Dalkıran B, Erden PE, Kılıç E. (2017). Amperometric Biosensors Based on Carboxylated Multiwalled Carbon Nanotubes-Metal Oxide Nanoparticles-7, 7, 8, 8-tetracyanoquinodimethane Composite for the Determination of Xanthine. Talanta.167: 286–295.
  • 35. Kronberg B, Lindman B, Holmberg K, Jönsson B. (2002). Surfactants and Polymers in Aqueous Solution. John Wiley & Sons Ltd. Chichester.
  • 36. Fanun M. (2008). Microemulsions: Properties and Applications. I. baskı. CRC Press. Boca Raton.
  • 37. Lawrence MJ, Rees GD. (2000). Microemulsion-Based Media As Novel Drug Delivery Systems. Adv Drug Deliv Rev. 45(1): 89–121.
  • 38. Kah M, Beulke S, Tiede K, Hofmann T. (2013). Nanopesticides: State of Knowledge, Environmental Fate, and Exposure Modeling. Crit Rev Environ Sci Technol. 43(16): 1823–1867.
  • 39. Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM. (2006). Nanoemulsions: Formation, Structure and Physical Properties. J Phys Condens Matter. 18(41): R635–R666
  • 40. McClements DJ. (2012). Nanoemulsions Versus Microemulsions: Terminology, Differences and Similarities. Soft Matter. 8: 1719–1729.
  • 41. Anton N, Vandamme TF. (2011). Nano-emulsions and Micro-emulsions: Clarifications of The Critical Differences. Pharm Res. 28(5): 978–985.
  • 42. Pan H, Yu L, Xu J, Sun D. (2014). Preparation of Highly Stable Concentrated W/O Nanoemulsions by PIC Method at Elevated Temperature. Colloids Surfaces A Physicochem Eng Asp. 447: 97–102.
  • 43. Fryd MM, Mason TG. (2012). Advanced Nanoemulsions. Annu Rev Phys Chem. 63: 493–518.
  • 44. Yu H, Huang Q. (2012). Improving The Oral Bioavailability of Curcumin Using Novel Organogel-Based Nanoemulsions. J Agric Food Chem. 60(21): 5373–5379.
  • 45. Silva HD, Cerqueira MÂ, Vicente AA. (2012). Nanoemulsions for Food Applications: Development and Characterization. Food Bioproc Tech. 5(3): 854–867.
  • 46. Yukuyama M, Ghisleni DDM, Pinto TdJA, Bou‐Chacra N. (2016). Nanoemulsion: Process Selection and Application in Cosmetics–A Review. Int J Cosmetic Sci. 38(1): 13–24.
  • 47. Vandamme TF, Anton N. (2010). Low-Energy Nanoemulsification to Design Veterinary Controlled Drug Delivery Devices. Int J Nanomedicine. 5: 867.
  • 48. Santos-Magalhães NS, Mosqueira VC. (2010). Nanotechnology Applied to The Treatment of Malaria. Adv Drug Deliv Rev. 62(4-5): 560–575.
  • 49. Molento MB. (2009). Parasite Control in The Age of Drug Resistance and Changing Agricultural Practices. Vet Parasitol. 163(3): 229–234.
  • 50. Allahverdiyev AM, Abamor ES, Bagirova M, et al. (2013). Investigation of Antileishmanial Activities of Tio2@ Ag Nanoparticles on Biological Properties of L. Tropica and L. Infantum Parasites, In Vitro. Exp Parasitol. 135(1): 55–63.
  • 51. Cruz AA, Molento MB. (2015). Nanotechnology: Meeting the Future of Veterinary Parasitology Research. Pesqui. Vet. Bras. 35(10): 842–843.
  • 52. Dinglasan RR, Armistead JS, Nyland JF, Jiang X, Mao HQ. (2013). Single-Dose Microparticle Delivery of A Malaria Transmission-Blocking Vaccine Elicits A Long-Lasting Functional Antibody Response. Curr Mol Med. 13(4): 479–487.
  • 53. Panda AK. (2012). Nanotechnology in Vaccine Development. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 82(1:) 13–27.
  • 54. Roth JA. (2011). Veterinary Vaccines and Their Importance to Animal Health and Public Health. Procedia Vaccinol. 5: 127–136.
  • 55. Gheibi Hayat SM, Darroudi M. (2019). Nanovaccine: A Novel Approach in Immunization. J Cell Physiol. 1-7
  • 56. Van Oirschot JT. (2001). Present and Future of Veterinary Viral Vaccinology: A Review. Vet Q. 23(3): 100–108.
  • 57. Gerdts V, Mutwiri GK, Tikoo SK, Babiuk LA. (2006). Mucosal Delivery of Vaccines in Domestic Animals. Vet Res. 37(3): 487–510.
  • 58. Taghavi A, Allan B, Mutwiri G, et al. (2009). Enhancement of Immunoprotective Effect of CpG-ODN by Formulation with Polyphosphazenes Against E. Coli Septicemia in Neonatal Chickens. Curr Drug Deliv. 6(1): 76–82.
  • 59. Calderon-Nieva D, Goonewardene KB, Gomis S, Foldvari M. (2017). Veterinary Vaccine Nanotechnology: Pulmonary and Nasal Delivery in Livestock Animals. Drug Deliv Transl Res. 7(4): 558–570.
  • 60. Look M, Bandyopadhyay A, Blum JS, Fahmy TM. (2010). Application of Nanotechnologies for Improved Immune Response Against Infectious Diseases in the Developing World. Adv Drug Deliv Rev. 62(4-5): 378–393.
  • 61. Csaba N, Garcia-Fuentes M, Alonso MJ. (2009). Nanoparticles For Nasal Vaccination. Adv Drug Deliv Rev. 61(2): 140–157.
  • 62. Kim MG, Park JY, Shon Y, Kim G, Shim G, Oh YK. (2014). Nanotechnology and Vaccine Development. Asian J Pharm Sci. 9(5): 227–235.
  • 63. Weissig V, Pettinger TK, Murdock N. (2014). Nanopharmaceuticals (part 1): Products on The Market. Int J Nanomedicine. 9: 4357-4373.
  • 64. Nordly P, Madsen HB, Nielsen HM, Foged C. (2009). Status and Future Prospects of Lipid-Based Particulate Delivery Systems As Vaccine Adjuvants and Their Combination with Immunostimulators. Expert Opin Drug Deliv. 6(7): 657–672.
  • 65. Scheerlinck JPY, Gloster S, Gamvrellis A, Mottram PL, Plebanski M. (2006). Systemic Immune Responses In Sheep, Induced By A Novel Nano-Bead Adjuvant. Vaccine. 24(8): 1124–1131.
  • 66. Corrie S, Depelsenaire A, Kendall M. (2012). Introducing The Nanopatch: A Skin-Based, Needle-Free Vaccine Delivery System. Aust. Biochem. 43(3): 17–20.
  • 67. Card JW, Jonaitis TS, Tafazoli S, Magnuson BA. (2011) An Appraisal of the Published Literature on the Safety and Toxicity of Food-Related Nanomaterials. Crit Rev Toxicol. 41(1): 20–49.
  • 68. You C-C, De M, Rotello VM. (2005) Monolayer-Protected Nanoparticle–Protein Interactions. Curr Opin Chem Biol. 9(6): 639–646.
  • 69. Pernodet N, Fang X, Sun Y, et al. (2006). Adverse Effects of Citrate/Gold Nanoparticles on Human Dermal Fibroblasts. Small. 2(6): 766–773.
  • 70. Park E-J, Choi J, Park Y-K, Park K. (2008). Oxidative Stress Induced by Cerium Oxide Nanoparticles in Cultured BEAS-2B Cells. Toxicology. 245(1-2): 90–100.
  • 71. Zhao J, Castranova V. (2011). Toxicology of Nanomaterials Used in Nanomedicine. Toxicol Environ Health B Crit Rev. 14(8): 593–632.
  • 72. Khanna P, Ong C, Bay B, Baeg G. (2015). Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death. Nanomaterials. 5(3): 1163–1180. 73. McShan D, Ray PC, Yu H. (2014). Molecular Toxicity Mechanism of Nanosilver. J Food Drug Anal. 22(1): 116–127.
  • 74. Jain SK, Sahni Y, Rajput N, Gautam V. (2011). Nanotoxicology: An Emerging Discipline. Vet World. 4(1): 35–40.

Veteriner Hekimlikte Nanoteknoloji

Year 2019, Volume: 12 Issue: 2, 149 - 156, 31.12.2019

Abstract

Nanoteknoloji, biyoloji, biyoteknoloji, tıp ve veteriner hekimliği alanlarındaki uygulamalar için yeni bakış açısı ortaya çıkarmaktadır. Hayvan sağlığı ve üretiminde mükemmellik, hayvanlar için etkili uygulamalar ve ürünler oluşturmak amacıyla nanoteknolojinin kullanımı yeni olanaklar sağlamaktadır. Nano ölçekte madde üretme ve manipüle etme kabiliyeti, veteriner hekimliğin çeşitli alanlarında uygulama için fırsatlar sunmaktadır. Veteriner hekimlikte özellikle ilaç formülasyonlarında ve diğer ilgili alanlarda yaygın olarak kullanılan nanomalzemeler, polimerik nanopartiküller, dendrimerler, lipozomlar, metalik nanopartiküller ve nanoemülsiyonlardan oluşmaktadır. Akıllı ilaç taşıyıcı sistemler, nanoaşılar, nanoterapötikler ve adjuvanlar hayvan sağlığı ve üretiminde devrim potansiyeline sahiptir. Nanomalzemeler, hastalık teşhisi, tedavisi, ilaç hedefleme ve iletimi, hayvan beslenmesi, hayvan ıslahı, üreme, doku mühendisliği ve hayvansal ürünlere katma değer için sayısız uygulama alanı oluşturmaktadır. Önümüzdeki yıllarda, nanoteknolojide devam eden araştırmalar hayvan sağlığı bilimini ve teknolojisini yenileyecek ve hayvan üretimini artırmaya yardımcı olacaktır. Veteriner hekimlikte nanoteknoloji, tanı, tedavi ve ayrıca moleküler ve hücresel üreme için yeni gelişmeler sağlama potansiyeline sahiptir.

References

  • 1. Vijayaraghavan K, Ashokkumar T. (2017). Plant-mediated Biosynthesis of Metallic Nanoparticles: A Review of Literature, Factors Affecting Synthesis, Characterization Techniques and Applications. J Environ Chem Eng. 5(5): 4866–4883.
  • 2. Albanese A, Tang PS, Chan WC. (2012). The Effect of Nanoparticle Size, Shape, and Surface Chemistry in Biological Systems. Annu Rev Biomed Eng. 14: 1-16.
  • 3. Issa B, Obaidat I, Albiss BA, Haik Y. (2013). Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications. Int J Mol Sci. 14(11): 21266-21305.
  • 4. Somorjai GA, Li Y. (2011). Impact of Surface Chemistry. Proc Natl Acad Sci U S A. 108(3): 917–924.
  • 5. Manuja A, Kumar B, Singh RK. (2012). Nanotechnology Developments: Opportunities for Animal Health and Production. Nanotechnology Dev. 2: 17-25.
  • 6. Scott NR. (2007). Nanoscience in Veterinary Medicine. Vet Res Commun. 1: 139–144.
  • 7. Foss Hansen S, Larsen BH, Olsen SI, Baun A. (2009). Categorization Framework to Aid Hazard Identification of Nanomaterials. Nanotoxicology. 1(3): 243–250.
  • 8. Berkner S, Schwirn K, Voelker D. (2016). Nanopharmaceuticals: Tiny Challenges for The Environmental Risk Assessment of Pharmaceuticals. Environ Toxicol Chem. 35(4): 780–787.
  • 9. Troncarelli MZ, Brandão HM, Gern JC, Guimarães AS, Langoni H. (2013). Nanotechnology and Antimicrobials in Veterinary Medicine. In: Microbial pathogens and strategies for combating them: science, technology and education. Méndez-Vilas A. (eds). Cilt 1. s. 1-774. Formatex Research Center, Badajoz, Spain.
  • 10. Pesticides A, Authority VM. Nanotechnologies for Pesticides and Veterinary Medicines: Regulatory Considerations. Final Report. Erişim: https://apvma.gov.au/sites/default/files/publication/15626-nanotechnologies-pesticides-veterinary-medicines_regulatory-considerations_july2015.pdf Erişim tarihi: 06.07.2015
  • 11. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. (2008). Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles. Mol Pharm. 5(4): 505–515.
  • 12. Prabhu RH, Patravale VB, Joshi MD. (2015). Polymeric Nanoparticles for Targeted Treatment in Oncology: Current Insights. Int J Nanomedicine. 10: 1001-1018.
  • 13. Sekhon BS. (2012). Nanoprobes and Their Applications in Veterinary Medicine and Animal Health. Res J Nanosci Nanotechnol. 2: 1–16.
  • 14. Chakravarthi PV, Balaji SN. (2010). Applications of Nanotechnology in Veterinary Medicine. Vet. World. 3(10): 477-480.
  • 15. Papahadjopoulos D, Kimelberg HK. (1974). Phospholipid Vesicles (Liposomes) as Models for Biological Membranes: Their Properties and Interactions with Cholesterol and Proteins. Prog Surf Sci. 4: 141–144.
  • 16. Meena NS, Sahni YP, Thakur D, Singh RP. (2018). Applications of Nanotechnology in Veterinary Therapeutics. J Entomol Zool Stud. 6(2): 167–175.
  • 17. Jurj A, Braicu C, Pop LA, Tomuleasa C, Gherman CD, Berindan-Neagoe I. (2017). The New Era of Nanotechnology, an Alternative to Change Cancer Treatment. Drug Des Devel Ther. 11: 2871-2890
  • 18. Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ. (2008). Biological Applications of Gold Nanoparticles. Chem Soc Rev. 37: 1896–1908.
  • 19. Puvanakrishnan P, Park J, Chatterjee D, Krishnan S, Tunnell JW. (2012). In Vivo Tumor Targeting of Gold Nanoparticles: Effect of Particle Type and Dosing Strategy. Int J Nanomedicine. 7: 1251-1258.
  • 20. Sýkora D. et al. (2010). Application of Gold Nanoparticles in Separation Sciences. J Sep Sci. 33(3): 372–387.
  • 21. Torres-Chavolla E, Ranasinghe RJ, Alocilja EC. (2010). Characterization and Functionalization of Biogenic Gold Nanoparticles for Biosensing Enhancement. IEEE Trans Nanotechnol. 9: 533–538.
  • 22. Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB. (2007). Chitosan Reduced Gold Nanoparticles as Novel Carriers for Transmucosal Delivery of Insulin. Pharm Res. 24(8): 1415–1426.
  • 23. Huang Y, Li X, Liao Z, Zhang G, et al. (2007). A Randomized Comparative Trial Between Acticoat and SD-Ag in The Treatment of Residual Burn Wounds, Including Safety Analysis. Burns. 33(2): 161–166.
  • 24. Pollini M, Paladini F, Catalano M, et al. (2011). Antibacterial Coatings on Haemodialysis Catheters by Photochemical Deposition of Silver Nanoparticles. J Mater Sci Mater Med. 22(9): 2005–2012.
  • 25. Erci F, Koc R, Isıldak I. (2018). Green Synthesis of Silver Nanoparticles Using Thymbra Spicata L. Var. Spicata (Zahter) Aqueous Leaf Extract and Evaluation of Their Morphology-Dependent Antibacterial and Cytotoxic Activity. Artif Cells, Nanomedicine, Biotechnol. 46(1): 150–158.
  • 26. Erci F, Torlak E. (2019). Antimicrobial and Antibiofilm Activity of Green Synthesized Silver Nanoparticles by Using Aqueous Leaf Extract of Thymus Serpyllum. Sak Univ J Sci. 23(3): 333–339.
  • 27. Pankhurst QA, Connolly J, Jones SK, Dobson J. (2003). Applications of Magnetic Nanoparticles in Biomedicine. J Phys D Appl Phys. 36(13): R167-R181
  • 28. Altikatoglu M, Attar A, Erci F, Cristache CM, Isıldak I. (2017). Green Synthesis of Copper Oxide Nanoparticles Using Ocimum Basilicum Extrct and Their Antibacterial Activity. Fresenius Environ. Bull. 26(12A): 7832–7837.
  • 29. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F. (2006). Toxicological Impact Studies Based on Escherichia Coli Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium. Nano Lett. 6(4): 866–870.
  • 30. Mishra A, Swain RK, Mishra SK, Panda N, Sethy K. (2014). Growth Performance and Serum Biochemical Parameters as Affected by Bano Zinc Supplementation in Layer Chicks. Indian J Anim Nutr. 31(4): 384–388.
  • 31. Yang ZP, Sun LP. (2006). Effects of Nanometre ZnO on Growth Performance of Early Weaned Piglets. J Shanxi Agric Sci. 3: 577–588.
  • 32. Pasupuleti S, Alapati S, Ganapathy S, Anumolu G, Pully NR, Prakhya BM. (2012) Toxicity of Zinc Oxide Nanoparticles through Oral Route. Toxicol Ind Health. 28(8): 675–686.
  • 33. Rajendran D. (2013). Application of Nano Minerals in Animal Production System. Res J Biotechnol. 8(3): 1–3.
  • 34. Dalkıran B, Erden PE, Kılıç E. (2017). Amperometric Biosensors Based on Carboxylated Multiwalled Carbon Nanotubes-Metal Oxide Nanoparticles-7, 7, 8, 8-tetracyanoquinodimethane Composite for the Determination of Xanthine. Talanta.167: 286–295.
  • 35. Kronberg B, Lindman B, Holmberg K, Jönsson B. (2002). Surfactants and Polymers in Aqueous Solution. John Wiley & Sons Ltd. Chichester.
  • 36. Fanun M. (2008). Microemulsions: Properties and Applications. I. baskı. CRC Press. Boca Raton.
  • 37. Lawrence MJ, Rees GD. (2000). Microemulsion-Based Media As Novel Drug Delivery Systems. Adv Drug Deliv Rev. 45(1): 89–121.
  • 38. Kah M, Beulke S, Tiede K, Hofmann T. (2013). Nanopesticides: State of Knowledge, Environmental Fate, and Exposure Modeling. Crit Rev Environ Sci Technol. 43(16): 1823–1867.
  • 39. Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM. (2006). Nanoemulsions: Formation, Structure and Physical Properties. J Phys Condens Matter. 18(41): R635–R666
  • 40. McClements DJ. (2012). Nanoemulsions Versus Microemulsions: Terminology, Differences and Similarities. Soft Matter. 8: 1719–1729.
  • 41. Anton N, Vandamme TF. (2011). Nano-emulsions and Micro-emulsions: Clarifications of The Critical Differences. Pharm Res. 28(5): 978–985.
  • 42. Pan H, Yu L, Xu J, Sun D. (2014). Preparation of Highly Stable Concentrated W/O Nanoemulsions by PIC Method at Elevated Temperature. Colloids Surfaces A Physicochem Eng Asp. 447: 97–102.
  • 43. Fryd MM, Mason TG. (2012). Advanced Nanoemulsions. Annu Rev Phys Chem. 63: 493–518.
  • 44. Yu H, Huang Q. (2012). Improving The Oral Bioavailability of Curcumin Using Novel Organogel-Based Nanoemulsions. J Agric Food Chem. 60(21): 5373–5379.
  • 45. Silva HD, Cerqueira MÂ, Vicente AA. (2012). Nanoemulsions for Food Applications: Development and Characterization. Food Bioproc Tech. 5(3): 854–867.
  • 46. Yukuyama M, Ghisleni DDM, Pinto TdJA, Bou‐Chacra N. (2016). Nanoemulsion: Process Selection and Application in Cosmetics–A Review. Int J Cosmetic Sci. 38(1): 13–24.
  • 47. Vandamme TF, Anton N. (2010). Low-Energy Nanoemulsification to Design Veterinary Controlled Drug Delivery Devices. Int J Nanomedicine. 5: 867.
  • 48. Santos-Magalhães NS, Mosqueira VC. (2010). Nanotechnology Applied to The Treatment of Malaria. Adv Drug Deliv Rev. 62(4-5): 560–575.
  • 49. Molento MB. (2009). Parasite Control in The Age of Drug Resistance and Changing Agricultural Practices. Vet Parasitol. 163(3): 229–234.
  • 50. Allahverdiyev AM, Abamor ES, Bagirova M, et al. (2013). Investigation of Antileishmanial Activities of Tio2@ Ag Nanoparticles on Biological Properties of L. Tropica and L. Infantum Parasites, In Vitro. Exp Parasitol. 135(1): 55–63.
  • 51. Cruz AA, Molento MB. (2015). Nanotechnology: Meeting the Future of Veterinary Parasitology Research. Pesqui. Vet. Bras. 35(10): 842–843.
  • 52. Dinglasan RR, Armistead JS, Nyland JF, Jiang X, Mao HQ. (2013). Single-Dose Microparticle Delivery of A Malaria Transmission-Blocking Vaccine Elicits A Long-Lasting Functional Antibody Response. Curr Mol Med. 13(4): 479–487.
  • 53. Panda AK. (2012). Nanotechnology in Vaccine Development. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 82(1:) 13–27.
  • 54. Roth JA. (2011). Veterinary Vaccines and Their Importance to Animal Health and Public Health. Procedia Vaccinol. 5: 127–136.
  • 55. Gheibi Hayat SM, Darroudi M. (2019). Nanovaccine: A Novel Approach in Immunization. J Cell Physiol. 1-7
  • 56. Van Oirschot JT. (2001). Present and Future of Veterinary Viral Vaccinology: A Review. Vet Q. 23(3): 100–108.
  • 57. Gerdts V, Mutwiri GK, Tikoo SK, Babiuk LA. (2006). Mucosal Delivery of Vaccines in Domestic Animals. Vet Res. 37(3): 487–510.
  • 58. Taghavi A, Allan B, Mutwiri G, et al. (2009). Enhancement of Immunoprotective Effect of CpG-ODN by Formulation with Polyphosphazenes Against E. Coli Septicemia in Neonatal Chickens. Curr Drug Deliv. 6(1): 76–82.
  • 59. Calderon-Nieva D, Goonewardene KB, Gomis S, Foldvari M. (2017). Veterinary Vaccine Nanotechnology: Pulmonary and Nasal Delivery in Livestock Animals. Drug Deliv Transl Res. 7(4): 558–570.
  • 60. Look M, Bandyopadhyay A, Blum JS, Fahmy TM. (2010). Application of Nanotechnologies for Improved Immune Response Against Infectious Diseases in the Developing World. Adv Drug Deliv Rev. 62(4-5): 378–393.
  • 61. Csaba N, Garcia-Fuentes M, Alonso MJ. (2009). Nanoparticles For Nasal Vaccination. Adv Drug Deliv Rev. 61(2): 140–157.
  • 62. Kim MG, Park JY, Shon Y, Kim G, Shim G, Oh YK. (2014). Nanotechnology and Vaccine Development. Asian J Pharm Sci. 9(5): 227–235.
  • 63. Weissig V, Pettinger TK, Murdock N. (2014). Nanopharmaceuticals (part 1): Products on The Market. Int J Nanomedicine. 9: 4357-4373.
  • 64. Nordly P, Madsen HB, Nielsen HM, Foged C. (2009). Status and Future Prospects of Lipid-Based Particulate Delivery Systems As Vaccine Adjuvants and Their Combination with Immunostimulators. Expert Opin Drug Deliv. 6(7): 657–672.
  • 65. Scheerlinck JPY, Gloster S, Gamvrellis A, Mottram PL, Plebanski M. (2006). Systemic Immune Responses In Sheep, Induced By A Novel Nano-Bead Adjuvant. Vaccine. 24(8): 1124–1131.
  • 66. Corrie S, Depelsenaire A, Kendall M. (2012). Introducing The Nanopatch: A Skin-Based, Needle-Free Vaccine Delivery System. Aust. Biochem. 43(3): 17–20.
  • 67. Card JW, Jonaitis TS, Tafazoli S, Magnuson BA. (2011) An Appraisal of the Published Literature on the Safety and Toxicity of Food-Related Nanomaterials. Crit Rev Toxicol. 41(1): 20–49.
  • 68. You C-C, De M, Rotello VM. (2005) Monolayer-Protected Nanoparticle–Protein Interactions. Curr Opin Chem Biol. 9(6): 639–646.
  • 69. Pernodet N, Fang X, Sun Y, et al. (2006). Adverse Effects of Citrate/Gold Nanoparticles on Human Dermal Fibroblasts. Small. 2(6): 766–773.
  • 70. Park E-J, Choi J, Park Y-K, Park K. (2008). Oxidative Stress Induced by Cerium Oxide Nanoparticles in Cultured BEAS-2B Cells. Toxicology. 245(1-2): 90–100.
  • 71. Zhao J, Castranova V. (2011). Toxicology of Nanomaterials Used in Nanomedicine. Toxicol Environ Health B Crit Rev. 14(8): 593–632.
  • 72. Khanna P, Ong C, Bay B, Baeg G. (2015). Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death. Nanomaterials. 5(3): 1163–1180. 73. McShan D, Ray PC, Yu H. (2014). Molecular Toxicity Mechanism of Nanosilver. J Food Drug Anal. 22(1): 116–127.
  • 74. Jain SK, Sahni Y, Rajput N, Gautam V. (2011). Nanotoxicology: An Emerging Discipline. Vet World. 4(1): 35–40.
There are 73 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Surgery
Journal Section Review
Authors

Yiğit Altav This is me 0000-0002-9394-0530

Ahmet Levent Baş This is me

Fatih Erci 0000-0002-3044-7343

Erdal Kocabaş 0000-0002-0980-0894

Publication Date December 31, 2019
Acceptance Date May 8, 2019
Published in Issue Year 2019 Volume: 12 Issue: 2

Cite

APA Altav, Y., Baş, A. L., Erci, F., Kocabaş, E. (2019). Veteriner Hekimlikte Nanoteknoloji. Dicle Üniversitesi Veteriner Fakültesi Dergisi, 12(2), 149-156.
AMA Altav Y, Baş AL, Erci F, Kocabaş E. Veteriner Hekimlikte Nanoteknoloji. Dicle Üniv Vet Fak Derg. December 2019;12(2):149-156.
Chicago Altav, Yiğit, Ahmet Levent Baş, Fatih Erci, and Erdal Kocabaş. “Veteriner Hekimlikte Nanoteknoloji”. Dicle Üniversitesi Veteriner Fakültesi Dergisi 12, no. 2 (December 2019): 149-56.
EndNote Altav Y, Baş AL, Erci F, Kocabaş E (December 1, 2019) Veteriner Hekimlikte Nanoteknoloji. Dicle Üniversitesi Veteriner Fakültesi Dergisi 12 2 149–156.
IEEE Y. Altav, A. L. Baş, F. Erci, and E. Kocabaş, “Veteriner Hekimlikte Nanoteknoloji”, Dicle Üniv Vet Fak Derg, vol. 12, no. 2, pp. 149–156, 2019.
ISNAD Altav, Yiğit et al. “Veteriner Hekimlikte Nanoteknoloji”. Dicle Üniversitesi Veteriner Fakültesi Dergisi 12/2 (December 2019), 149-156.
JAMA Altav Y, Baş AL, Erci F, Kocabaş E. Veteriner Hekimlikte Nanoteknoloji. Dicle Üniv Vet Fak Derg. 2019;12:149–156.
MLA Altav, Yiğit et al. “Veteriner Hekimlikte Nanoteknoloji”. Dicle Üniversitesi Veteriner Fakültesi Dergisi, vol. 12, no. 2, 2019, pp. 149-56.
Vancouver Altav Y, Baş AL, Erci F, Kocabaş E. Veteriner Hekimlikte Nanoteknoloji. Dicle Üniv Vet Fak Derg. 2019;12(2):149-56.