Research Article
BibTex RIS Cite

SAF MAGNEZYUMUN BİYOBOZUNUR MALZEME OLARAK KULLANILMA POTANSİYELİ

Year 2017, Volume: 6 Issue: 2, 9 - 25, 30.11.2017

Abstract

Uzun süreli tedavi gerektirmeyen kemik travmalarında kullanılacak vida
ve diğer bağlantı elemanlarının biyobozunur özelliğe sahip magnezyum
alaşımlardan yapılması, özellikle büyüme çağındaki çocuklarda uygulanan,
metalik implantların zamanla neden olduğu olumsuz etkileri ortadan
kaldırmaktadır. Bu çalışmanın amacı; saf magnezyumun yapay vücut sıvısı (SBF)
içerisindeki korozyon mekanizmasını 30 saat süren açık devre potansiyeli
ölçümleri (OCP) ve bu esnada yapılan in-situ pH ölçümleriyle araştırmak
ve iki yöntem arasındaki korelasyonu ortaya koymaktır. Elde edilen veriler
çalışma elektrotunun yüzeyinde de zamanla oluşan Mg(OH)2 tabakasının
korozyon hızını etkilediğini göstermektedir. 

References

  • [1] Fekry, A., and El-Sherief, R. (2009). Electrochemical corrosion behavior of magnesium and titanium alloys in simulated body fluid, Electrochimica Acta, . 54, 28, 7280-7285
  • [2] Gray, J. E., and Luan B., (2002). Protective coatings on magnesium and its alloys − A critical review, Journal of Alloys and Compounds, 336, 88-113.
  • [3] Zhang, Y., Yan C., Wang F., Lou H., and Cao C., (2002). Study on the environmentally friendly anodizing of AZ91D magnesium alloy, Surface and Coatings Tech., 161, 36-43.
  • [4] Makar, G.L., and Kruger J., (1993). Corrosion of magnesium, İnternational Materials Reviews, 38(3), 138-153.
  • [5] Kainer, K.; Buch, F,. (2003). Chapter 1: The Current State of Technology and Potential for Further Development of Magnesium Applications, In: Magnesium-Alloys and Technology., Pages (1-22), Wiley- VCH Verlag GmbH & Co. KG aA, Germany.
  • [6] González, S., Pellicer, E., Suriñach, S., Baró, M.D., and Sort, J., (2013). Biodegradation and Mechanical Integrity of Magnesium and Magnesium Alloys Suitable for Implants, Biodegradation - Engineering and Technology, Dr. Rolando Chamy (Ed.), InTech, DOI: 10.5772/55584.
  • [7] Puleo, D.A., (1996). Biochemical surface modification of Co-Cr-Mo, Biomaterials, 17, 217-222.
  • [8] Sumita, M., Hanawa T., Teoh S.H. (2004). Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials-review, Matererials Science and Engineering C, 24, 753-760.
  • [9] Geetha, M., Singh, A.K., Asokamani, R., Gogia A.K., (2009). Ti-based biomaterials, the ultimate choice for orthopaedic implants, A review. Progress in Materials Science, 54, 397-425.
  • [10] Moravej, M., Mantovani, D., (2011). Biodegradable metals for cardiovascular stent application: interests and new opportunities, International Journal of Molecular Sciences, 12, 4250-4270.
  • [11] González, S., Pellicer E., Fornell J., Blanquer A., Barrios L., Ibañez E., Solsona P., Suriñach S., Baró M.D., Nogués C., Sort J., (2012). Improved mechanical perfomance and delayed corrosion phenomena in biodegradable Mg-Zn-Ca alloys through Pd-alloying, Journal of the Mechanical Behavior of Biomedical Materials, 6, 53-62.
  • [12] Stroganov, G.B., Savitsky, E., Mikhailovich, T., Nina, M., Terekhova, V. and Fedorovna, V., (1972). Magnesium-base alloys for use in bone surgery, US Patent No,3, 687, 135.
  • [13] Agarwal,S., Curtin,J., Duffy,B., Jaiswal, S., (2016). Biodegradable Magnesium Alloys for Orthopaedic Applications: A Review on Corrosion, Biocompatibility and Surface Modifications, Materials Science & Engineering, 68, 948-963.
  • [14] H.E. Friedrich, B.L. Mordike, (2006). Magnesium technology, Metallurgy, Design Data,Applications, Springer, Germany.
  • [15] Zhou, Z., Liu X., Liu Q., Liu L., (2009). Evaluation of the potential cytotoxicity of metals associated with implanted biomaterials (I), Preparative Biochemistry and Biotechnology, 39, 81-91.
  • [16] Seiler, H.G., H. Sigel, (1988). Handbook of Toxicity of Inorganic Compounds, Marcel Dekker Inc., New York.
  • [17] Yamamoto, A.R., Honma, M. Sumita, (1998). Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells, Journal of Biomedical Materials Research, 39, 331–340.
  • [18] Zhang, B., Y. Wang, L. Geng, (2011). Chapter 9 in Biomaterials – Physics and Chemistry, InTech, Rijeka, Croatia.
  • [19] Purvis, F.L., Marquis, A.E., Wineman, S.A., (2016). Microstructure and Corrosion Behavior of a Magnesium Alloy for Bio-Implants, Confidential Report.
  • [20] Wan, Y., G. Xiong, H. Luo, F. He, Y. Huang, X. Zhou, (2008). Preparation and characterization of a new biomedical magnesium–calcium alloy, Materials & Design, 29, 2034–2037.
  • [21] Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C.J. and Windhagen, H., (2005). In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials, 26, 3557-3563.
  • [22] Jingjing, H., Yibin, R., Jiang, Y., Zhang, B., and Yang, K., (2007). In vivo study of degradable magnesium and magnesium alloy as bone implant, Frontiers of Materials Science in China, 1 (4), 405-409.
  • [23] Mousa, M.H., Hussein, H.K., Pant, R.H., Woo, M.H., Park, H.C., Kim, S.C., (2016). In vitro degradation behavior and cytocompatibility of a bioceramicanodization films on the biodegradable magnesium alloy, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 488, 82-92.
  • [24] Song, G.L., Atrens, A., (2000). Corrosion Mechanisms of Magnesium Alloys, Advanced Engineering Materials, 1(1), 11-33.
  • [25] Zhang, W., (2005). Corrosion Behaviour of AJ62x and AZ91D magnesium alloys in chlorine media, M. Sc.Thesis, Laval University, Quebec, Canada.
  • [26] Godard H.P., Jepson W.B., Bothwell M.R., Kane R.L., (1967) The Corrosion of Light Metals. In: John Wiley&Sons (ed.). New York.
  • [27] Zheng, Y.F., Gu X.N., Witte F., (2014). Biodegradable metals, Materials Science and Engineering R, 77, 1-34.
  • [28] Revie, R.W., Uhlig H.H., (2008). Corrosion and Corrosion Control, 4th ed., John Wiley & Sons, Hoboken, New Jersey.
  • [29] Wang, L., Shinohara T, Zhang B-P., (2009). Influence of deaerated condition on the Corrosion behavior of AZ31 magnesium alloy in dilute NaCl solutions, Matererials Transactions, 50, 2563-2569.
  • [30] Uddin, M.S, Colin H., Murphy P., (2015). Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants, Sci. Technol. Adv. Mater., 16, 05350.
  • [31] Bradley, D. (2009). Neuronal nanotubes: Nanotechnology. Materials Today, 12(12), 14.
  • [32] Quach, N.C., Uggowitzer PJ, Schmutz P. (2008). Corrosion behavior of an Mg-Y-RE alloy used in biomedical applications studied by electrochemical techniques. Chemie, 11, 1043-1054.
  • [33] Kokubo, T. & Takadama H., (2006). How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 27, 2907-2915.
  • [34] Gerengi, H., Ugras H.I., Solomon M.M., Umoren S.A., Kurtay M., Atar N. (2016). Synergistic corrosion inhibition effect of 1-ethyl-1-methylpyrrolidinium tetrafluoroborate and iodide ions for low carbon steel in HCl solution, Journal of Adhesion Science and Technology, 30, 2383-2403.
  • [35] Berthome, G., Malki B., Baroux B., (2006). Pitting transients analysis of stainless steels at the open circuit potential, Corrosion Science, 48, 2432-2441.
Year 2017, Volume: 6 Issue: 2, 9 - 25, 30.11.2017

Abstract

References

  • [1] Fekry, A., and El-Sherief, R. (2009). Electrochemical corrosion behavior of magnesium and titanium alloys in simulated body fluid, Electrochimica Acta, . 54, 28, 7280-7285
  • [2] Gray, J. E., and Luan B., (2002). Protective coatings on magnesium and its alloys − A critical review, Journal of Alloys and Compounds, 336, 88-113.
  • [3] Zhang, Y., Yan C., Wang F., Lou H., and Cao C., (2002). Study on the environmentally friendly anodizing of AZ91D magnesium alloy, Surface and Coatings Tech., 161, 36-43.
  • [4] Makar, G.L., and Kruger J., (1993). Corrosion of magnesium, İnternational Materials Reviews, 38(3), 138-153.
  • [5] Kainer, K.; Buch, F,. (2003). Chapter 1: The Current State of Technology and Potential for Further Development of Magnesium Applications, In: Magnesium-Alloys and Technology., Pages (1-22), Wiley- VCH Verlag GmbH & Co. KG aA, Germany.
  • [6] González, S., Pellicer, E., Suriñach, S., Baró, M.D., and Sort, J., (2013). Biodegradation and Mechanical Integrity of Magnesium and Magnesium Alloys Suitable for Implants, Biodegradation - Engineering and Technology, Dr. Rolando Chamy (Ed.), InTech, DOI: 10.5772/55584.
  • [7] Puleo, D.A., (1996). Biochemical surface modification of Co-Cr-Mo, Biomaterials, 17, 217-222.
  • [8] Sumita, M., Hanawa T., Teoh S.H. (2004). Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials-review, Matererials Science and Engineering C, 24, 753-760.
  • [9] Geetha, M., Singh, A.K., Asokamani, R., Gogia A.K., (2009). Ti-based biomaterials, the ultimate choice for orthopaedic implants, A review. Progress in Materials Science, 54, 397-425.
  • [10] Moravej, M., Mantovani, D., (2011). Biodegradable metals for cardiovascular stent application: interests and new opportunities, International Journal of Molecular Sciences, 12, 4250-4270.
  • [11] González, S., Pellicer E., Fornell J., Blanquer A., Barrios L., Ibañez E., Solsona P., Suriñach S., Baró M.D., Nogués C., Sort J., (2012). Improved mechanical perfomance and delayed corrosion phenomena in biodegradable Mg-Zn-Ca alloys through Pd-alloying, Journal of the Mechanical Behavior of Biomedical Materials, 6, 53-62.
  • [12] Stroganov, G.B., Savitsky, E., Mikhailovich, T., Nina, M., Terekhova, V. and Fedorovna, V., (1972). Magnesium-base alloys for use in bone surgery, US Patent No,3, 687, 135.
  • [13] Agarwal,S., Curtin,J., Duffy,B., Jaiswal, S., (2016). Biodegradable Magnesium Alloys for Orthopaedic Applications: A Review on Corrosion, Biocompatibility and Surface Modifications, Materials Science & Engineering, 68, 948-963.
  • [14] H.E. Friedrich, B.L. Mordike, (2006). Magnesium technology, Metallurgy, Design Data,Applications, Springer, Germany.
  • [15] Zhou, Z., Liu X., Liu Q., Liu L., (2009). Evaluation of the potential cytotoxicity of metals associated with implanted biomaterials (I), Preparative Biochemistry and Biotechnology, 39, 81-91.
  • [16] Seiler, H.G., H. Sigel, (1988). Handbook of Toxicity of Inorganic Compounds, Marcel Dekker Inc., New York.
  • [17] Yamamoto, A.R., Honma, M. Sumita, (1998). Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells, Journal of Biomedical Materials Research, 39, 331–340.
  • [18] Zhang, B., Y. Wang, L. Geng, (2011). Chapter 9 in Biomaterials – Physics and Chemistry, InTech, Rijeka, Croatia.
  • [19] Purvis, F.L., Marquis, A.E., Wineman, S.A., (2016). Microstructure and Corrosion Behavior of a Magnesium Alloy for Bio-Implants, Confidential Report.
  • [20] Wan, Y., G. Xiong, H. Luo, F. He, Y. Huang, X. Zhou, (2008). Preparation and characterization of a new biomedical magnesium–calcium alloy, Materials & Design, 29, 2034–2037.
  • [21] Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C.J. and Windhagen, H., (2005). In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials, 26, 3557-3563.
  • [22] Jingjing, H., Yibin, R., Jiang, Y., Zhang, B., and Yang, K., (2007). In vivo study of degradable magnesium and magnesium alloy as bone implant, Frontiers of Materials Science in China, 1 (4), 405-409.
  • [23] Mousa, M.H., Hussein, H.K., Pant, R.H., Woo, M.H., Park, H.C., Kim, S.C., (2016). In vitro degradation behavior and cytocompatibility of a bioceramicanodization films on the biodegradable magnesium alloy, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 488, 82-92.
  • [24] Song, G.L., Atrens, A., (2000). Corrosion Mechanisms of Magnesium Alloys, Advanced Engineering Materials, 1(1), 11-33.
  • [25] Zhang, W., (2005). Corrosion Behaviour of AJ62x and AZ91D magnesium alloys in chlorine media, M. Sc.Thesis, Laval University, Quebec, Canada.
  • [26] Godard H.P., Jepson W.B., Bothwell M.R., Kane R.L., (1967) The Corrosion of Light Metals. In: John Wiley&Sons (ed.). New York.
  • [27] Zheng, Y.F., Gu X.N., Witte F., (2014). Biodegradable metals, Materials Science and Engineering R, 77, 1-34.
  • [28] Revie, R.W., Uhlig H.H., (2008). Corrosion and Corrosion Control, 4th ed., John Wiley & Sons, Hoboken, New Jersey.
  • [29] Wang, L., Shinohara T, Zhang B-P., (2009). Influence of deaerated condition on the Corrosion behavior of AZ31 magnesium alloy in dilute NaCl solutions, Matererials Transactions, 50, 2563-2569.
  • [30] Uddin, M.S, Colin H., Murphy P., (2015). Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants, Sci. Technol. Adv. Mater., 16, 05350.
  • [31] Bradley, D. (2009). Neuronal nanotubes: Nanotechnology. Materials Today, 12(12), 14.
  • [32] Quach, N.C., Uggowitzer PJ, Schmutz P. (2008). Corrosion behavior of an Mg-Y-RE alloy used in biomedical applications studied by electrochemical techniques. Chemie, 11, 1043-1054.
  • [33] Kokubo, T. & Takadama H., (2006). How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 27, 2907-2915.
  • [34] Gerengi, H., Ugras H.I., Solomon M.M., Umoren S.A., Kurtay M., Atar N. (2016). Synergistic corrosion inhibition effect of 1-ethyl-1-methylpyrrolidinium tetrafluoroborate and iodide ions for low carbon steel in HCl solution, Journal of Adhesion Science and Technology, 30, 2383-2403.
  • [35] Berthome, G., Malki B., Baroux B., (2006). Pitting transients analysis of stainless steels at the open circuit potential, Corrosion Science, 48, 2432-2441.
There are 35 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Hüsnü Gerengi

Ertuğrul Kaya

Marina Cabrını This is me

Publication Date November 30, 2017
Published in Issue Year 2017 Volume: 6 Issue: 2

Cite

APA Gerengi, H., Kaya, E., & Cabrını, M. (2017). SAF MAGNEZYUMUN BİYOBOZUNUR MALZEME OLARAK KULLANILMA POTANSİYELİ. İleri Teknoloji Bilimleri Dergisi, 6(2), 9-25.
AMA Gerengi H, Kaya E, Cabrını M. SAF MAGNEZYUMUN BİYOBOZUNUR MALZEME OLARAK KULLANILMA POTANSİYELİ. İleri Teknoloji Bilimleri Dergisi. November 2017;6(2):9-25.
Chicago Gerengi, Hüsnü, Ertuğrul Kaya, and Marina Cabrını. “SAF MAGNEZYUMUN BİYOBOZUNUR MALZEME OLARAK KULLANILMA POTANSİYELİ”. İleri Teknoloji Bilimleri Dergisi 6, no. 2 (November 2017): 9-25.
EndNote Gerengi H, Kaya E, Cabrını M (November 1, 2017) SAF MAGNEZYUMUN BİYOBOZUNUR MALZEME OLARAK KULLANILMA POTANSİYELİ. İleri Teknoloji Bilimleri Dergisi 6 2 9–25.
IEEE H. Gerengi, E. Kaya, and M. Cabrını, “SAF MAGNEZYUMUN BİYOBOZUNUR MALZEME OLARAK KULLANILMA POTANSİYELİ”, İleri Teknoloji Bilimleri Dergisi, vol. 6, no. 2, pp. 9–25, 2017.
ISNAD Gerengi, Hüsnü et al. “SAF MAGNEZYUMUN BİYOBOZUNUR MALZEME OLARAK KULLANILMA POTANSİYELİ”. İleri Teknoloji Bilimleri Dergisi 6/2 (November 2017), 9-25.
JAMA Gerengi H, Kaya E, Cabrını M. SAF MAGNEZYUMUN BİYOBOZUNUR MALZEME OLARAK KULLANILMA POTANSİYELİ. İleri Teknoloji Bilimleri Dergisi. 2017;6:9–25.
MLA Gerengi, Hüsnü et al. “SAF MAGNEZYUMUN BİYOBOZUNUR MALZEME OLARAK KULLANILMA POTANSİYELİ”. İleri Teknoloji Bilimleri Dergisi, vol. 6, no. 2, 2017, pp. 9-25.
Vancouver Gerengi H, Kaya E, Cabrını M. SAF MAGNEZYUMUN BİYOBOZUNUR MALZEME OLARAK KULLANILMA POTANSİYELİ. İleri Teknoloji Bilimleri Dergisi. 2017;6(2):9-25.