Research Article
BibTex RIS Cite

SANDALYE ÇERÇEVESİNİN CATIA ILE SONLU ELEMANLAR ANALIZI

Year 2017, Volume: 6 Issue: 3, 621 - 631, 15.12.2017

Abstract

Odun teknik olarak anizotropik
bir malzemedir fakat genellikle transvers izotrop olarak modellenir. Ayrıca
silindirik yapısı nedeni ile polar ortotropik bir yapısı vardır. Odunun Sonlu
Elemanlar Analizi (SEA) için doğrusal elastik bölge, plastiklik, transvers
izotropik plastiklik, Hill akma kıstası gibi birçok teori kullanılabilmektedir.
Ahşap yapıların güvenli bir şekilde işlevlerini yerine getirebilmeleri için
bileşenlerinin ve sistemin tümünün elastik bölge sınırları içerisinde
davranması gereklidir. Bu çalışmada farklı enine kesit ölçülerindeki ön ve arka
ayaklı kayın (Fagus orientalis L.) sandalye
çerçevelerinin SE Analizi CATIA yazılımı ile gerçekleştirilmiştir. Elde edilen
sonuçlar, enine kesit değerinin yük taşıma ve yükü tüm yapıya iletmede önemli
olduğu ve bağlantı noktalarındaki gerilimi etkilediğini göstermiştir.   

References

  • [1]. Hong, J.P., Lee, J.J., Yeo, H., Kim, C.K., Pang, J., Oh, J.K., (2016). Parametric study on the capability of three dimensional finite element analysis (3D-FEA) of compressive behaviour of Douglas fir, Holzforschung, 70(6), 539–546. [2]. Bodig, J, and Jayne, B.A., (1982). Mechanics of wood and wood composite, Van Nostrand Reinhold Company Inc., New York. [3]. Dinwoodie, J.M., (2000). Timber: Its Nature and Behaviour, 2nd ed., E&FN Spon, London. [4]. Clauss, S., Pescatore, C., Niemz, P., (2014). Anisotropic elastic properties of common ash (Fraxinus excelsior L.), Holzforschung 68, 941–949. [5]. Avez, C., Descamps, T., Serrano, E., Leoskool, L., (2016). Finite element modelling of inclined screwed timber to timber connections with a large gap between the elements, Eur. J. Wood Prod., 74, 467–471. [6]. Gereke, T., Hering, S., Niemz, P., (2016). Finite Element Analysis of Wood Adhesive Joints, Pro Ligno, 12(1), 3-14. [7]. Hofstetter, K., Gamstedt, E.K., (2009). Hierarchical modeling of microstructural effects on mechanical properties of wood. A review COST Action E35 2004-2008: Wood machining –micromechanics and fracture, Holzforschung, 63, 130-138. [8]. Landis, E.N. , Navi, P., (2009). Modeling crack propagation in wood and wood composites. A review COST Action E35 2004–2008: Wood machining – micromechanics and fracture, Holzforschung, 63, 150-156. [9]. Yoshihara, H., (2009). Shear properties of wood measured by the asymmetric four-point bending test of notched specimen, Holzforschung, 63, 211-216. [10]. Yoshihara, H., (2010). Examination of the mode I critical stress intensity factor of wood obtained by single-edge-notched bending test, Holzforschung, 64, 501-509. [11]. Yoshihara, H., (2012). Mode II critical stress intensity factor of wood measured by the asymmetric four-point bending test of singleedge- notched specimen while considering an additional crack length, Holzforschung, 66, 989-992. [12]. Yoshihara, H., (2013). Flatwise Young’s modulus and flatwise shear modulus of plywood measured by flexural vibration test, Holzforschung , 67, 683-690. [13]. Yoshihara, H., and Usuki, A., (2012). Mode I critical stress intensity factor of wood and medium-density fiberboard measured by compact tension test, Holzforschung, 65, 729-735. [14]. Isaksson, P., Gradin, P.A., Hellstrom, L.M., (2013). A numerical and experimental study regarding the influence of some process parameters on the damage state in wood chips, Holzforschung, 67, 691-696. [15]. Larsen, F., and Ormarsson, S., (2014). Experimental and finite element study of the effect of temperature and moisture on the tangential tensile strength and fracture behavior in timber logs, Holzforschung, 68, 133-140. [16]. Yoshihara, H., and Yoshinobu, M., (2015). Young’s modulus and shear modulus of solid wood measured by the flexural vibration test of specimens with large height/length ratios, Holzforschung, 69, 493-499. [17]. Casagrande, D., Rossi, S., Sartoir, T., Tomasi, R., (2016). Proposal of an analytical procedure and a simplified numerical model for elastic response of single-storey timber shear-walls, Construction and Building Materials, 102, 1101-1112. [18]. Rossi, S., Casagrande, D., Tomasi, R., Piazza, M., (2016). Seismic elastic analysis of light timber-frame multi-storey buildings: Proposal of an iterative approach, Construction and Building Materials, 102, 1154-1167. [19]. Sadd, M.H., (2014). Elasticity, Theory, Applications, and Numerics, Elsevier, USA. [20]. Mihailescu, T., (1998). An investigation of the performance of mortise and tenon joints using the finite element method, Ph.D thesis, Buckinghamshire Chilterns University, Buckinghamshire, United Kingdom. [21]. Guan, Z.W., and Rodd, P.D., (2000). A three-dimensional finite element model for locally reinforced timber joints made with hollow dowel fasteners, Can. J. Civil Eng., 27, 785-797. [22]. Guan, Z.W., and Rodd, P.D., (2001). DVW-Local reinforcement for timber joints, J. Struct. Eng. ASCE, 127, 894-900. [23]. Moses, D.M., (2000). Constitutive and analytical models for structural composite lumber with applications to bolted connections, Ph.D thesis, The University of British Columbia, Vancouver, BC, Canada. [24]. Kharouf, N., (2001). Post-elastic behaviour of bolted connections in wood, Ph.D thesis, McGill University, Montreal, QC, Canada. [25]. Oudjene, M., and Khelifa, M., (2009). Elasto-plastic constitutive law for wood behaviour under compressive loadings, Constr. Build. Mater, 23, 3359-3366. [26]. Hering, S., Saft, S., Resch, E., Niemz, P., Kaliske, M., (2012). Characterisation of moisture-dependent plasticity of beech wood and its application to a multi-surface plasticity model, Holzforschung, 66, 373-380. [27]. Kandemir, G., and Kaya, Z., (2009). EUFORGEN Technical Guidelines for genetic conservation and use of oriental beech (Fagus orientalis), Bioversity International, Rome, Italy. [28]. OGM (General Directorate of Forestry), (2013). Orman Atlası, Orman Genel Müdürlüğü, Ankara. [29]. Yılmaz, T., (2011). Finite element modeling of chair frames (In Turkish: Sandalye çerçevelerinin sonlu eleman analizi), MSc. Thesis, Suleyman Demirel University, Isparta, Turkey. [30]. Gustafsson, S.I., (2010). The strength properties of Swedish oak and beech, Drewno. Pr. Nauk. Donies. Komunik, 53, 67-83. [31]. Guntekin, E., Yılmaz Aydın, T., Niemz, P., (2016). Some orthotropic elastic properties of Fagus Orientalis influenced by moisture content, Wood Research, 61(1), 95-104. [32]. Matthys, R.J., (2004). Accurate clock pendulums, Oxford University Press, London. [33]. TS 9215, (2005). Strength and balance tests for furniture (In Turkish: Ahşap mobilya mukavemet ve denge deneyleri), Turkish Standards Institution, Ankara.
Year 2017, Volume: 6 Issue: 3, 621 - 631, 15.12.2017

Abstract

References

  • [1]. Hong, J.P., Lee, J.J., Yeo, H., Kim, C.K., Pang, J., Oh, J.K., (2016). Parametric study on the capability of three dimensional finite element analysis (3D-FEA) of compressive behaviour of Douglas fir, Holzforschung, 70(6), 539–546. [2]. Bodig, J, and Jayne, B.A., (1982). Mechanics of wood and wood composite, Van Nostrand Reinhold Company Inc., New York. [3]. Dinwoodie, J.M., (2000). Timber: Its Nature and Behaviour, 2nd ed., E&FN Spon, London. [4]. Clauss, S., Pescatore, C., Niemz, P., (2014). Anisotropic elastic properties of common ash (Fraxinus excelsior L.), Holzforschung 68, 941–949. [5]. Avez, C., Descamps, T., Serrano, E., Leoskool, L., (2016). Finite element modelling of inclined screwed timber to timber connections with a large gap between the elements, Eur. J. Wood Prod., 74, 467–471. [6]. Gereke, T., Hering, S., Niemz, P., (2016). Finite Element Analysis of Wood Adhesive Joints, Pro Ligno, 12(1), 3-14. [7]. Hofstetter, K., Gamstedt, E.K., (2009). Hierarchical modeling of microstructural effects on mechanical properties of wood. A review COST Action E35 2004-2008: Wood machining –micromechanics and fracture, Holzforschung, 63, 130-138. [8]. Landis, E.N. , Navi, P., (2009). Modeling crack propagation in wood and wood composites. A review COST Action E35 2004–2008: Wood machining – micromechanics and fracture, Holzforschung, 63, 150-156. [9]. Yoshihara, H., (2009). Shear properties of wood measured by the asymmetric four-point bending test of notched specimen, Holzforschung, 63, 211-216. [10]. Yoshihara, H., (2010). Examination of the mode I critical stress intensity factor of wood obtained by single-edge-notched bending test, Holzforschung, 64, 501-509. [11]. Yoshihara, H., (2012). Mode II critical stress intensity factor of wood measured by the asymmetric four-point bending test of singleedge- notched specimen while considering an additional crack length, Holzforschung, 66, 989-992. [12]. Yoshihara, H., (2013). Flatwise Young’s modulus and flatwise shear modulus of plywood measured by flexural vibration test, Holzforschung , 67, 683-690. [13]. Yoshihara, H., and Usuki, A., (2012). Mode I critical stress intensity factor of wood and medium-density fiberboard measured by compact tension test, Holzforschung, 65, 729-735. [14]. Isaksson, P., Gradin, P.A., Hellstrom, L.M., (2013). A numerical and experimental study regarding the influence of some process parameters on the damage state in wood chips, Holzforschung, 67, 691-696. [15]. Larsen, F., and Ormarsson, S., (2014). Experimental and finite element study of the effect of temperature and moisture on the tangential tensile strength and fracture behavior in timber logs, Holzforschung, 68, 133-140. [16]. Yoshihara, H., and Yoshinobu, M., (2015). Young’s modulus and shear modulus of solid wood measured by the flexural vibration test of specimens with large height/length ratios, Holzforschung, 69, 493-499. [17]. Casagrande, D., Rossi, S., Sartoir, T., Tomasi, R., (2016). Proposal of an analytical procedure and a simplified numerical model for elastic response of single-storey timber shear-walls, Construction and Building Materials, 102, 1101-1112. [18]. Rossi, S., Casagrande, D., Tomasi, R., Piazza, M., (2016). Seismic elastic analysis of light timber-frame multi-storey buildings: Proposal of an iterative approach, Construction and Building Materials, 102, 1154-1167. [19]. Sadd, M.H., (2014). Elasticity, Theory, Applications, and Numerics, Elsevier, USA. [20]. Mihailescu, T., (1998). An investigation of the performance of mortise and tenon joints using the finite element method, Ph.D thesis, Buckinghamshire Chilterns University, Buckinghamshire, United Kingdom. [21]. Guan, Z.W., and Rodd, P.D., (2000). A three-dimensional finite element model for locally reinforced timber joints made with hollow dowel fasteners, Can. J. Civil Eng., 27, 785-797. [22]. Guan, Z.W., and Rodd, P.D., (2001). DVW-Local reinforcement for timber joints, J. Struct. Eng. ASCE, 127, 894-900. [23]. Moses, D.M., (2000). Constitutive and analytical models for structural composite lumber with applications to bolted connections, Ph.D thesis, The University of British Columbia, Vancouver, BC, Canada. [24]. Kharouf, N., (2001). Post-elastic behaviour of bolted connections in wood, Ph.D thesis, McGill University, Montreal, QC, Canada. [25]. Oudjene, M., and Khelifa, M., (2009). Elasto-plastic constitutive law for wood behaviour under compressive loadings, Constr. Build. Mater, 23, 3359-3366. [26]. Hering, S., Saft, S., Resch, E., Niemz, P., Kaliske, M., (2012). Characterisation of moisture-dependent plasticity of beech wood and its application to a multi-surface plasticity model, Holzforschung, 66, 373-380. [27]. Kandemir, G., and Kaya, Z., (2009). EUFORGEN Technical Guidelines for genetic conservation and use of oriental beech (Fagus orientalis), Bioversity International, Rome, Italy. [28]. OGM (General Directorate of Forestry), (2013). Orman Atlası, Orman Genel Müdürlüğü, Ankara. [29]. Yılmaz, T., (2011). Finite element modeling of chair frames (In Turkish: Sandalye çerçevelerinin sonlu eleman analizi), MSc. Thesis, Suleyman Demirel University, Isparta, Turkey. [30]. Gustafsson, S.I., (2010). The strength properties of Swedish oak and beech, Drewno. Pr. Nauk. Donies. Komunik, 53, 67-83. [31]. Guntekin, E., Yılmaz Aydın, T., Niemz, P., (2016). Some orthotropic elastic properties of Fagus Orientalis influenced by moisture content, Wood Research, 61(1), 95-104. [32]. Matthys, R.J., (2004). Accurate clock pendulums, Oxford University Press, London. [33]. TS 9215, (2005). Strength and balance tests for furniture (In Turkish: Ahşap mobilya mukavemet ve denge deneyleri), Turkish Standards Institution, Ankara.
There are 1 citations in total.

Details

Journal Section Articles
Authors

Murat Aydın

Tuğba Yılmaz Aydın This is me

Publication Date December 15, 2017
Published in Issue Year 2017 Volume: 6 Issue: 3

Cite

APA Aydın, M., & Yılmaz Aydın, T. (2017). SANDALYE ÇERÇEVESİNİN CATIA ILE SONLU ELEMANLAR ANALIZI. İleri Teknoloji Bilimleri Dergisi, 6(3), 621-631.
AMA Aydın M, Yılmaz Aydın T. SANDALYE ÇERÇEVESİNİN CATIA ILE SONLU ELEMANLAR ANALIZI. İleri Teknoloji Bilimleri Dergisi. December 2017;6(3):621-631.
Chicago Aydın, Murat, and Tuğba Yılmaz Aydın. “SANDALYE ÇERÇEVESİNİN CATIA ILE SONLU ELEMANLAR ANALIZI”. İleri Teknoloji Bilimleri Dergisi 6, no. 3 (December 2017): 621-31.
EndNote Aydın M, Yılmaz Aydın T (December 1, 2017) SANDALYE ÇERÇEVESİNİN CATIA ILE SONLU ELEMANLAR ANALIZI. İleri Teknoloji Bilimleri Dergisi 6 3 621–631.
IEEE M. Aydın and T. Yılmaz Aydın, “SANDALYE ÇERÇEVESİNİN CATIA ILE SONLU ELEMANLAR ANALIZI”, İleri Teknoloji Bilimleri Dergisi, vol. 6, no. 3, pp. 621–631, 2017.
ISNAD Aydın, Murat - Yılmaz Aydın, Tuğba. “SANDALYE ÇERÇEVESİNİN CATIA ILE SONLU ELEMANLAR ANALIZI”. İleri Teknoloji Bilimleri Dergisi 6/3 (December 2017), 621-631.
JAMA Aydın M, Yılmaz Aydın T. SANDALYE ÇERÇEVESİNİN CATIA ILE SONLU ELEMANLAR ANALIZI. İleri Teknoloji Bilimleri Dergisi. 2017;6:621–631.
MLA Aydın, Murat and Tuğba Yılmaz Aydın. “SANDALYE ÇERÇEVESİNİN CATIA ILE SONLU ELEMANLAR ANALIZI”. İleri Teknoloji Bilimleri Dergisi, vol. 6, no. 3, 2017, pp. 621-3.
Vancouver Aydın M, Yılmaz Aydın T. SANDALYE ÇERÇEVESİNİN CATIA ILE SONLU ELEMANLAR ANALIZI. İleri Teknoloji Bilimleri Dergisi. 2017;6(3):621-3.