Research Article
BibTex RIS Cite

ISIL İŞLEMİN KAYIN ODUNUN MEKANİK ÖZELLİKLERİ VE BOYUTSAL KARARLILIĞI ÜZERİNE ETKİSİ

Year 2017, Volume: 6 Issue: 3, 820 - 830, 15.12.2017

Abstract

Farklı sıcaklıklarda özellikle yüksek
sıcaklıklardaki termal modifikasyon odunun kimyasal, fiziksel ve mekanik
özelliklerini değiştirmede etkili bir metottur. Bu çalışmada, ThermoWood
metoduyla 170, 180, 190, ve 212 oC sıcaklıkta 2 saat süre ile ısıl işlem görmüş
kayın odununun bazı mekanik ve fiziksel özellikleri araştırılmıştır. Sonuçlar
tam kuru referans örnekler ile karşılaştırılmıştır. Sonuç olarak, ısıl işlem
sıcaklığının artmasına bağlı olarak, eğilme direnci azalırken, liflere paralel
basınç direnci ve elastikiyet modülü artmıştır. Ayrıca, işlem sıcaklığı
yükseldikçe, denge rutubet miktarı azalmıştır. Boyutsal stabilizasyonda önemli
ölçüde artış görülmüş ve bunun yanında odun örneklerinin rengi yeknesak bir
şekilde koyulaşmıştır.

References

  • 1. Akyildiz, M. H., Ates, S., and Özdemir, H. (2009). Technological and chemical properties of heat-treated Anatolian black pine wood. African Journal of Biotechnology, 8(11). 2. Bekhta, P., and Niemz, P. (2003). Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood.Holzforschung, 57(5), 539-546. 3. Bhuiyan, T. R., and Hirai, N. (2005). Study of crystalline behavior of heat-treated wood cellulose during treatments in water. Journal of Wood Science, 51(1), 42-47. 4. Boonstra, M. (2008). A two-stage thermal modification of wood. Ph.D. Thesis in Applied Biological Sciences: Soil and Forest management. Henry Poincare university- Nancy, France. 5. Boonstra, M. J., and Tjeerdsma, B. (2006). Chemical analysis of heat treated softwoods. Holz als Roh-und Werkstoff, 64(3), 204-211. 6. Boonstra, M. J., Van Acker, J., Tjeerdsma, B. F., and Kegel, E. V. (2007). Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Annals of forest science, 64(7), 679-690. 7. Burmester, A. (1975). The dimentional stabilization of wood. Holz als Roh-und Werkstoff. 33 (9), 333-335. 8. Cao, Y., Lu, J., Huang, R., and Jiang, J. (2012). Increased dimensional stability of Chinese through steam-heat treatment. European Journal of Wood and Wood Products, 70(4), 441-444. 9. Chang, C. I., and Keith, C. T. (1978). Properties of heat-darkened wood: II. Mechanical properties and gluability. 10. Esteves, B., Domingos, I., and Pereira, H. (2008). Pine wood modification by heat treatment in air. BioResources, 3(1), 142-154. 11. Esteves, B., Marques, A. V., Domingos, I., and Pereira, H. (2007b). Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Science and Technology, 41(3), 193-207. 12. Feist, W. C., and Sell, J. (1987). Weathering behaviour of dimensionally stabilized wood treated by heating under pressure of nitrogen gas. Wood Fiber Sci, 19(2), 183-195. 13. Fengel, D. (1966). On the changes of the wood and its components within the temperature range up to 200 °C-Part III: Thermally and mechanically caused structural changes in spruce wood. . Holz als Roh-und Werkstoff, 24(11). 529-536. 14. Fengel, D., and Wegener, G. (Eds.). (1983). Wood: chemistry, ultrastructure, reactions. Walter de Gruyter. 15. Finnish Thermo Wood Association. (2003).Thermo Wood Handbook. Helsinki, Finland. 16. Hill, C. A. (2007). Wood modification: chemical, thermal and other processes (Vol. 5). John Wiley and Sons. 17. Hillis, W. E., and Rozsa, A. N. (1978). The softening temperatures of wood.Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 32(2), 68-73. 18. Johansson, D., and Morén, T. (2006). The potential of colour measurement for strength prediction of thermally treated wood. Holz als Roh-und Werkstoff,64(2), 104-110. 19. Kaygin, B., Gunduz, G., and Aydemir, D. (2009). Some physical properties of heat-treated Paulownia (Paulownia elongata) wood. Drying Technology, 27(1), 89-93. 20. Kol, H. S. (2010). Characteristics of heat-treated Turkish pine and fir wood after ThermoWood processing. Journal of Environmental Biology, 31, 1007-1011. 21. Kol, H. Ş., Sefil, Y., and Aysal Keskin, S.(2015). Effect of Heat Treatment on the Mechanical Properties, and Dimensional Stability of Fir Wood. 27th İnternational Conference Research for furniture industry, 17-18 September 2015, Ankara, Turkey. 22. Kollmann, F., and Schneider, A. (1963). Über das sorptionsverhalten wärmebehandelter Hölzer. Holz als Roh-und Werkstoff, 21(3), 77-85. 23. Korkut, S. (2008). The effects of heat treatment on some technological properties in Uludağ fir (Abies bornmuellerinana Mattf.) wood. Building and environment, 43(4), 422-428. 24. Korkut, S., Kök, M. S., Korkut, D. S., and Gürleyen, T. (2008). The effects of heat treatment on technological properties in Red-bud maple (Acer trautvetteri Medw.) wood. Bioresource Technology, 99(6), 1538-1543. 25. Özçifçi, A. (2007). Effects of scarf joints on bending strength and modulus of elasticity to laminated veneer lumber (LVL). Building and Environment, 42(3), 1510-1514. 26. Özçifçi, A. (2009). The effects of pilot hole, screw types and layer thickness on the withdrawal strength of screws in laminated veneer lumber. Materials and Design, 30(7), 2355-2358. 27. Pizzi, A., A. Stephanou, M.J. Boonstra and A.J. Pendlebury. (1994). A new concept on the chemical modification of wood by organic anhydrides. Holzforschung, 48, 91-94. 28. Rapp, A.O. (2001). Review of heat treatment of wood. In: Proceedings of COST E22 Environmental optimisation of wood protection. Antibes, France. p. 6. 29. Rusche, H.(1973). Thermal degradation of wood at temperatures up to 200 C.part II. reaction kinetics of loss of mass during heat treatment of wood. Holz als Roh-und werkstoff, 31 (8). 30. Santos, J.A. (2000). Mechanical behavior of Eucalyptus wood modified by heat. Wood Sci. Technol., 34, 39-43. 31. Schneider, V. A. (1973). Investigations on the convection drying of lumber at extremely high-temperatures. Holz Roh-U. Werkstoff, 31,198–206 32. Seborg, R. M., Tarkow, H., and Stamm, A. J. (1953). Effect of heat upon the dimensional stabilisation of wood. Journal Forest Products Research Society,3(9). 33. Shi, J. L., Kocaefe, D., and Zhang, J. (2007). Mechanical behaviour of Quebec wood species heat-treated using ThermoWood process. Holz als Roh-und Werkstoff, 65(4), 255-259. 34. Stamm, A. J. (1956). Thermal degradation of wood and cellulose. Industrial and Engineering Chemistry, 48(3), 413-417. 35. Stamm, A. J., and Hansen, L. A. (1937). Minimizing wood shrinkage and swelling Effect of heating in various gases. Industrial and Engineering Chemistry, 29(7), 831-833. 36. Stamm, A. J., Burr, H. K., and Kline, A. A. (1946). Staybwood—heat-stabilized wood. Industrial and Engineering Chemistry, 38(6), 630-634. 37. Sweet, M. S., and Winandy, J. E. (1999). Influence of degree of polymerization of cellulose and hemicellulose on strength loss in fire-retardant-treated southern pine. Holzforschung, 53(3), 311-317. 38. Tjeerdsma, B. F., and Militz, H. (2005). Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als Roh-und Werkstoff, 63(2), 102-111. 39. Tjeerdsma, B. F., Boonstra, M., Pizzi, A., Tekely, P., and Militz, H. (1998). Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz als Roh-und Werkstoff, 56(3), 149-153. 40. TS 2471 (1976): Wood, Determination of Moisture Content for Physical and Mechanical Tests, TSE. Ankara. 41. TS 2474(1976): Wood-determination of ultimate strength in static bending. TSE. Ankara. 42. TS 2478 (1976): Wood-determination of modulus of elasticity in static bending TSE, Ankara. 43. TS 2595(1976): Wood-determination of ultimate stress in compression parallel to grain. TSE, Ankara. 44. Unsal, O., and Ayrilmis, N. (2005). Variations in compression strength and surface roughness of heat-treated Turkish river red gum (Eucalyptus camaldulensis) wood. Journal of Wood Science, 51(4), 405-409. 45. Viitaniemi, P. (1997). ThermoWood – Modified wood for improved performance. In: Proceedings of wood the ecological material the 4th Euro-wood symposium. Stockholm, Sweden. Sep 22-23 1997 Tratek Rapport. 9709084. pp. 67-69. 46. Viitaniemi, P. (2000). New properties for thermally-treated wood. Indust Horizons. March, 9. 47. Vukas, N., Horman, I., and Hajdarević, S. (2010). Heat-treated wood. 14th International Research/Expert Conference”Trends in the Development of Machinery and Associated Technology” TMT 2010, Mediterranean Cruise, 11-18 September 2010. 48. Winandy, J. E., and Lebow, P. K. (2001). Modeling strength loss in wood by chemical composition. Part I. An individual component model for southern pine. Wood and Fiber Science, 33(2), 239-254. 49. Winandy, J. E., and Morrell, J. J. (1993). Relationship between incipient decay, strength, and chemical composition of Douglas-fir heartwood. Wood and Fiber Science, 25(3), 278-288. 50. Windeisen, E., Strobel, C., and Wegener, G. (2007). Chemical changes during the production of thermo-treated beech wood. Wood Science and Technology,41(6), 523-536. 51. Yildiz, S. (2002). Effect of heat treatment on water repellence and anti-swelling efficiency of beech. The International Research Group On Wood Preservation, Document No: IRG/WP 02-40222. 52. Yildiz, S., Gezer, E. D., and Yildiz, U. C. (2006). Mechanical and chemical behavior of spruce wood modified by heat. Building and Environment, 41(12), 1762-1766.

EFFECT OF HEAT TREATMENT ON THE MECHANICAL PROPERTIES AND DIMENSIONAL STABILITY OF BEECH WOOD

Year 2017, Volume: 6 Issue: 3, 820 - 830, 15.12.2017

Abstract

Thermal
modification at different temperatures especially at high temperatures is an
effective method to change chemical, physical, and mechanical properties of
wood. In this study, some mechanical and physical properties of heat treated
beech (Fagus orientalis) wood at
temperatures 170, 180, 190, and 212oC for 2 h with ThermoWood method
were investigated. The results were compared with oven-dried reference samples.
Consequently, depending on the increase of heat treatment temperature, the bending
strength was decreasing, the compression strength parallel to the grain and
modulus of elasticity increased. Also, when the treatment temperature
increased, equilibrium moisture content decreased. It was seen that a
significant increase of dimensional stability and besides the color of samples
was darken uniformly.

References

  • 1. Akyildiz, M. H., Ates, S., and Özdemir, H. (2009). Technological and chemical properties of heat-treated Anatolian black pine wood. African Journal of Biotechnology, 8(11). 2. Bekhta, P., and Niemz, P. (2003). Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood.Holzforschung, 57(5), 539-546. 3. Bhuiyan, T. R., and Hirai, N. (2005). Study of crystalline behavior of heat-treated wood cellulose during treatments in water. Journal of Wood Science, 51(1), 42-47. 4. Boonstra, M. (2008). A two-stage thermal modification of wood. Ph.D. Thesis in Applied Biological Sciences: Soil and Forest management. Henry Poincare university- Nancy, France. 5. Boonstra, M. J., and Tjeerdsma, B. (2006). Chemical analysis of heat treated softwoods. Holz als Roh-und Werkstoff, 64(3), 204-211. 6. Boonstra, M. J., Van Acker, J., Tjeerdsma, B. F., and Kegel, E. V. (2007). Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Annals of forest science, 64(7), 679-690. 7. Burmester, A. (1975). The dimentional stabilization of wood. Holz als Roh-und Werkstoff. 33 (9), 333-335. 8. Cao, Y., Lu, J., Huang, R., and Jiang, J. (2012). Increased dimensional stability of Chinese through steam-heat treatment. European Journal of Wood and Wood Products, 70(4), 441-444. 9. Chang, C. I., and Keith, C. T. (1978). Properties of heat-darkened wood: II. Mechanical properties and gluability. 10. Esteves, B., Domingos, I., and Pereira, H. (2008). Pine wood modification by heat treatment in air. BioResources, 3(1), 142-154. 11. Esteves, B., Marques, A. V., Domingos, I., and Pereira, H. (2007b). Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Science and Technology, 41(3), 193-207. 12. Feist, W. C., and Sell, J. (1987). Weathering behaviour of dimensionally stabilized wood treated by heating under pressure of nitrogen gas. Wood Fiber Sci, 19(2), 183-195. 13. Fengel, D. (1966). On the changes of the wood and its components within the temperature range up to 200 °C-Part III: Thermally and mechanically caused structural changes in spruce wood. . Holz als Roh-und Werkstoff, 24(11). 529-536. 14. Fengel, D., and Wegener, G. (Eds.). (1983). Wood: chemistry, ultrastructure, reactions. Walter de Gruyter. 15. Finnish Thermo Wood Association. (2003).Thermo Wood Handbook. Helsinki, Finland. 16. Hill, C. A. (2007). Wood modification: chemical, thermal and other processes (Vol. 5). John Wiley and Sons. 17. Hillis, W. E., and Rozsa, A. N. (1978). The softening temperatures of wood.Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 32(2), 68-73. 18. Johansson, D., and Morén, T. (2006). The potential of colour measurement for strength prediction of thermally treated wood. Holz als Roh-und Werkstoff,64(2), 104-110. 19. Kaygin, B., Gunduz, G., and Aydemir, D. (2009). Some physical properties of heat-treated Paulownia (Paulownia elongata) wood. Drying Technology, 27(1), 89-93. 20. Kol, H. S. (2010). Characteristics of heat-treated Turkish pine and fir wood after ThermoWood processing. Journal of Environmental Biology, 31, 1007-1011. 21. Kol, H. Ş., Sefil, Y., and Aysal Keskin, S.(2015). Effect of Heat Treatment on the Mechanical Properties, and Dimensional Stability of Fir Wood. 27th İnternational Conference Research for furniture industry, 17-18 September 2015, Ankara, Turkey. 22. Kollmann, F., and Schneider, A. (1963). Über das sorptionsverhalten wärmebehandelter Hölzer. Holz als Roh-und Werkstoff, 21(3), 77-85. 23. Korkut, S. (2008). The effects of heat treatment on some technological properties in Uludağ fir (Abies bornmuellerinana Mattf.) wood. Building and environment, 43(4), 422-428. 24. Korkut, S., Kök, M. S., Korkut, D. S., and Gürleyen, T. (2008). The effects of heat treatment on technological properties in Red-bud maple (Acer trautvetteri Medw.) wood. Bioresource Technology, 99(6), 1538-1543. 25. Özçifçi, A. (2007). Effects of scarf joints on bending strength and modulus of elasticity to laminated veneer lumber (LVL). Building and Environment, 42(3), 1510-1514. 26. Özçifçi, A. (2009). The effects of pilot hole, screw types and layer thickness on the withdrawal strength of screws in laminated veneer lumber. Materials and Design, 30(7), 2355-2358. 27. Pizzi, A., A. Stephanou, M.J. Boonstra and A.J. Pendlebury. (1994). A new concept on the chemical modification of wood by organic anhydrides. Holzforschung, 48, 91-94. 28. Rapp, A.O. (2001). Review of heat treatment of wood. In: Proceedings of COST E22 Environmental optimisation of wood protection. Antibes, France. p. 6. 29. Rusche, H.(1973). Thermal degradation of wood at temperatures up to 200 C.part II. reaction kinetics of loss of mass during heat treatment of wood. Holz als Roh-und werkstoff, 31 (8). 30. Santos, J.A. (2000). Mechanical behavior of Eucalyptus wood modified by heat. Wood Sci. Technol., 34, 39-43. 31. Schneider, V. A. (1973). Investigations on the convection drying of lumber at extremely high-temperatures. Holz Roh-U. Werkstoff, 31,198–206 32. Seborg, R. M., Tarkow, H., and Stamm, A. J. (1953). Effect of heat upon the dimensional stabilisation of wood. Journal Forest Products Research Society,3(9). 33. Shi, J. L., Kocaefe, D., and Zhang, J. (2007). Mechanical behaviour of Quebec wood species heat-treated using ThermoWood process. Holz als Roh-und Werkstoff, 65(4), 255-259. 34. Stamm, A. J. (1956). Thermal degradation of wood and cellulose. Industrial and Engineering Chemistry, 48(3), 413-417. 35. Stamm, A. J., and Hansen, L. A. (1937). Minimizing wood shrinkage and swelling Effect of heating in various gases. Industrial and Engineering Chemistry, 29(7), 831-833. 36. Stamm, A. J., Burr, H. K., and Kline, A. A. (1946). Staybwood—heat-stabilized wood. Industrial and Engineering Chemistry, 38(6), 630-634. 37. Sweet, M. S., and Winandy, J. E. (1999). Influence of degree of polymerization of cellulose and hemicellulose on strength loss in fire-retardant-treated southern pine. Holzforschung, 53(3), 311-317. 38. Tjeerdsma, B. F., and Militz, H. (2005). Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als Roh-und Werkstoff, 63(2), 102-111. 39. Tjeerdsma, B. F., Boonstra, M., Pizzi, A., Tekely, P., and Militz, H. (1998). Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz als Roh-und Werkstoff, 56(3), 149-153. 40. TS 2471 (1976): Wood, Determination of Moisture Content for Physical and Mechanical Tests, TSE. Ankara. 41. TS 2474(1976): Wood-determination of ultimate strength in static bending. TSE. Ankara. 42. TS 2478 (1976): Wood-determination of modulus of elasticity in static bending TSE, Ankara. 43. TS 2595(1976): Wood-determination of ultimate stress in compression parallel to grain. TSE, Ankara. 44. Unsal, O., and Ayrilmis, N. (2005). Variations in compression strength and surface roughness of heat-treated Turkish river red gum (Eucalyptus camaldulensis) wood. Journal of Wood Science, 51(4), 405-409. 45. Viitaniemi, P. (1997). ThermoWood – Modified wood for improved performance. In: Proceedings of wood the ecological material the 4th Euro-wood symposium. Stockholm, Sweden. Sep 22-23 1997 Tratek Rapport. 9709084. pp. 67-69. 46. Viitaniemi, P. (2000). New properties for thermally-treated wood. Indust Horizons. March, 9. 47. Vukas, N., Horman, I., and Hajdarević, S. (2010). Heat-treated wood. 14th International Research/Expert Conference”Trends in the Development of Machinery and Associated Technology” TMT 2010, Mediterranean Cruise, 11-18 September 2010. 48. Winandy, J. E., and Lebow, P. K. (2001). Modeling strength loss in wood by chemical composition. Part I. An individual component model for southern pine. Wood and Fiber Science, 33(2), 239-254. 49. Winandy, J. E., and Morrell, J. J. (1993). Relationship between incipient decay, strength, and chemical composition of Douglas-fir heartwood. Wood and Fiber Science, 25(3), 278-288. 50. Windeisen, E., Strobel, C., and Wegener, G. (2007). Chemical changes during the production of thermo-treated beech wood. Wood Science and Technology,41(6), 523-536. 51. Yildiz, S. (2002). Effect of heat treatment on water repellence and anti-swelling efficiency of beech. The International Research Group On Wood Preservation, Document No: IRG/WP 02-40222. 52. Yildiz, S., Gezer, E. D., and Yildiz, U. C. (2006). Mechanical and chemical behavior of spruce wood modified by heat. Building and Environment, 41(12), 1762-1766.
There are 1 citations in total.

Details

Journal Section Articles
Authors

Hamiyet Şahin Kol This is me

Sema Aysal Keskin

Kübra Gündüz Vaydoğan This is me

Publication Date December 15, 2017
Published in Issue Year 2017 Volume: 6 Issue: 3

Cite

APA Şahin Kol, H., Aysal Keskin, S., & Gündüz Vaydoğan, K. (2017). ISIL İŞLEMİN KAYIN ODUNUN MEKANİK ÖZELLİKLERİ VE BOYUTSAL KARARLILIĞI ÜZERİNE ETKİSİ. İleri Teknoloji Bilimleri Dergisi, 6(3), 820-830.
AMA Şahin Kol H, Aysal Keskin S, Gündüz Vaydoğan K. ISIL İŞLEMİN KAYIN ODUNUN MEKANİK ÖZELLİKLERİ VE BOYUTSAL KARARLILIĞI ÜZERİNE ETKİSİ. İleri Teknoloji Bilimleri Dergisi. December 2017;6(3):820-830.
Chicago Şahin Kol, Hamiyet, Sema Aysal Keskin, and Kübra Gündüz Vaydoğan. “ISIL İŞLEMİN KAYIN ODUNUN MEKANİK ÖZELLİKLERİ VE BOYUTSAL KARARLILIĞI ÜZERİNE ETKİSİ”. İleri Teknoloji Bilimleri Dergisi 6, no. 3 (December 2017): 820-30.
EndNote Şahin Kol H, Aysal Keskin S, Gündüz Vaydoğan K (December 1, 2017) ISIL İŞLEMİN KAYIN ODUNUN MEKANİK ÖZELLİKLERİ VE BOYUTSAL KARARLILIĞI ÜZERİNE ETKİSİ. İleri Teknoloji Bilimleri Dergisi 6 3 820–830.
IEEE H. Şahin Kol, S. Aysal Keskin, and K. Gündüz Vaydoğan, “ISIL İŞLEMİN KAYIN ODUNUN MEKANİK ÖZELLİKLERİ VE BOYUTSAL KARARLILIĞI ÜZERİNE ETKİSİ”, İleri Teknoloji Bilimleri Dergisi, vol. 6, no. 3, pp. 820–830, 2017.
ISNAD Şahin Kol, Hamiyet et al. “ISIL İŞLEMİN KAYIN ODUNUN MEKANİK ÖZELLİKLERİ VE BOYUTSAL KARARLILIĞI ÜZERİNE ETKİSİ”. İleri Teknoloji Bilimleri Dergisi 6/3 (December 2017), 820-830.
JAMA Şahin Kol H, Aysal Keskin S, Gündüz Vaydoğan K. ISIL İŞLEMİN KAYIN ODUNUN MEKANİK ÖZELLİKLERİ VE BOYUTSAL KARARLILIĞI ÜZERİNE ETKİSİ. İleri Teknoloji Bilimleri Dergisi. 2017;6:820–830.
MLA Şahin Kol, Hamiyet et al. “ISIL İŞLEMİN KAYIN ODUNUN MEKANİK ÖZELLİKLERİ VE BOYUTSAL KARARLILIĞI ÜZERİNE ETKİSİ”. İleri Teknoloji Bilimleri Dergisi, vol. 6, no. 3, 2017, pp. 820-3.
Vancouver Şahin Kol H, Aysal Keskin S, Gündüz Vaydoğan K. ISIL İŞLEMİN KAYIN ODUNUN MEKANİK ÖZELLİKLERİ VE BOYUTSAL KARARLILIĞI ÜZERİNE ETKİSİ. İleri Teknoloji Bilimleri Dergisi. 2017;6(3):820-3.