BibTex RIS Cite
Year 2016, Volume: 2 Issue: 1, 1 - 6, 22.05.2016

Abstract

References

  • DRAGOMIR, S.S., (2002). On Some New Inequalities of Hermite-Hadamard Functions, Tamkang Journal of Mathematics, 33 (1). For 5 Convex
  • BAKULA, M.K., PECARIC, J., RIBICIC, M., (2006). Companion inequalities to Jensen’s inequality for 5 convex and (<, 5) convex functions, J. Inequal. Pure Appl. Math., 7. Article 194.
  • ÖZDEMIR, M.E., AVCI, M. and SET, E., (2010). On some inequalities of Hermite Hadamard type via 5 convexity, Appl. Math. Lett., 23 1065-1070. BAKULA, M.K., ÖZDEMİR, M.E. and PECARIC, J., (2008). Hadamard type inequalities for 5 convex and (<, 5) convex functions, J. Inequal. Pure Appl. Math., 9. Article 96. HUDZIK, H. and MALIGRANDA, L., (1994). Some remarks on
  • convex functions, Aequationes
  • Math., (48) 100-111.
  • DRAGOMIR S.S. and TOADER, G., (1993). Some inequalities for University Babes Bolyai, Mathematica, 38 (1), 21- 28.
  • TOADER, G., (1984). Some generalization of the convexity, Proc. Colloq. Approx. Opt., Cluj- Napoja, 329-338.
  • TOADER, G., (1998). On a generalization of the convexity, Mathematica, 30 (53), 83-87.
  • DRAGOMIR S.S., (2002). On some new inequalities of Hermite-Hadamard type for 5 convex functions, Tamkang Journal of Mathematics, 33 (1).
  • BRECKNER, W.W., (1978). Stetingkeitsaussagen fur eine Klasse verallgemeinerter konvexer funktionen in topologischen linearel Raumen, Pupl.Inst.Math., 23, 13-20.
  • BRECKNER, W.W., (1993). Continuity of generalized convex and generalized concave set valued functions, Rev Anal., Number Thkor. Approx., 22, 39-51.
  • DRAGOMIR, S.S. and FITZPATRICK, S., (1999). The Hadamard’s inequality for s-convex functions in the second sense, Demonstratio Math., 32 (4), 687- 696.
  • KIRMACI, U.S., BAKULA, M.K., ÖZDEMİR, M.E. and PECARIC, J., (2007). Hadamard-type inequalities for 8 convex functions, Applied Mathematics and Computation, 193, 26-35.
  • ÖZDEMİR, M.E., SET, E. and SARIKAYA, M.Z., (2010). Konveks Fonksiyonlar Üzerine Notlar, Atatürk University.
  • SARIKAYA, M.Z., SET, E. and ÖZDEMİR, M.E., (2011). Some new Hadamard’s type inequalits for co- ordinated functions, Hacettepe J. of. Math. and St., 40 219- 229.
  • MIHEŞAN, V.G., (1993). Generalization of the convexity, Seminar of Functional Equations, Approx. and convex, Cluj-Napoca (Romania).
  • SET, E., SARDARI, M., ÖZDEMIR, M.E. and ROOIN, J., (2009). On generalizations of the Hadamard inequality for (<, 5) convex functions, RGMIA Res. Rep. Coll., 12 (4), Article 4.
  • ÖZDEMIR, M.E., KAVURMACI, H. and SET, E., (2010). Ostrowski’s type inequalities for (<, 5) convex functions, Kyungpook Math. J. 50, 371-378.
  • ÖZDEMIR, M.E., AVCI, M. and KAVURMACI, H., (2011). Hermite-Hadamard- type inequalities via (<, 5) convextiy, Computers and Mathematics with Applications, 61, 2614-2620.
  • PECARIC, J., PROSCHAN, F. and TONG, Y.L., (1992). Convex Statistical Applications, Acedemic Press, Inc. Orderings and

INTEGRAL INEQUALITIES FOR SOME CONVEX FUNCTIONS

Year 2016, Volume: 2 Issue: 1, 1 - 6, 22.05.2016

Abstract

In this paper, we established some new integral inequalities for

different kinds of convex functions by using some classical inequalities.

References

  • DRAGOMIR, S.S., (2002). On Some New Inequalities of Hermite-Hadamard Functions, Tamkang Journal of Mathematics, 33 (1). For 5 Convex
  • BAKULA, M.K., PECARIC, J., RIBICIC, M., (2006). Companion inequalities to Jensen’s inequality for 5 convex and (<, 5) convex functions, J. Inequal. Pure Appl. Math., 7. Article 194.
  • ÖZDEMIR, M.E., AVCI, M. and SET, E., (2010). On some inequalities of Hermite Hadamard type via 5 convexity, Appl. Math. Lett., 23 1065-1070. BAKULA, M.K., ÖZDEMİR, M.E. and PECARIC, J., (2008). Hadamard type inequalities for 5 convex and (<, 5) convex functions, J. Inequal. Pure Appl. Math., 9. Article 96. HUDZIK, H. and MALIGRANDA, L., (1994). Some remarks on
  • convex functions, Aequationes
  • Math., (48) 100-111.
  • DRAGOMIR S.S. and TOADER, G., (1993). Some inequalities for University Babes Bolyai, Mathematica, 38 (1), 21- 28.
  • TOADER, G., (1984). Some generalization of the convexity, Proc. Colloq. Approx. Opt., Cluj- Napoja, 329-338.
  • TOADER, G., (1998). On a generalization of the convexity, Mathematica, 30 (53), 83-87.
  • DRAGOMIR S.S., (2002). On some new inequalities of Hermite-Hadamard type for 5 convex functions, Tamkang Journal of Mathematics, 33 (1).
  • BRECKNER, W.W., (1978). Stetingkeitsaussagen fur eine Klasse verallgemeinerter konvexer funktionen in topologischen linearel Raumen, Pupl.Inst.Math., 23, 13-20.
  • BRECKNER, W.W., (1993). Continuity of generalized convex and generalized concave set valued functions, Rev Anal., Number Thkor. Approx., 22, 39-51.
  • DRAGOMIR, S.S. and FITZPATRICK, S., (1999). The Hadamard’s inequality for s-convex functions in the second sense, Demonstratio Math., 32 (4), 687- 696.
  • KIRMACI, U.S., BAKULA, M.K., ÖZDEMİR, M.E. and PECARIC, J., (2007). Hadamard-type inequalities for 8 convex functions, Applied Mathematics and Computation, 193, 26-35.
  • ÖZDEMİR, M.E., SET, E. and SARIKAYA, M.Z., (2010). Konveks Fonksiyonlar Üzerine Notlar, Atatürk University.
  • SARIKAYA, M.Z., SET, E. and ÖZDEMİR, M.E., (2011). Some new Hadamard’s type inequalits for co- ordinated functions, Hacettepe J. of. Math. and St., 40 219- 229.
  • MIHEŞAN, V.G., (1993). Generalization of the convexity, Seminar of Functional Equations, Approx. and convex, Cluj-Napoca (Romania).
  • SET, E., SARDARI, M., ÖZDEMIR, M.E. and ROOIN, J., (2009). On generalizations of the Hadamard inequality for (<, 5) convex functions, RGMIA Res. Rep. Coll., 12 (4), Article 4.
  • ÖZDEMIR, M.E., KAVURMACI, H. and SET, E., (2010). Ostrowski’s type inequalities for (<, 5) convex functions, Kyungpook Math. J. 50, 371-378.
  • ÖZDEMIR, M.E., AVCI, M. and KAVURMACI, H., (2011). Hermite-Hadamard- type inequalities via (<, 5) convextiy, Computers and Mathematics with Applications, 61, 2614-2620.
  • PECARIC, J., PROSCHAN, F. and TONG, Y.L., (1992). Convex Statistical Applications, Acedemic Press, Inc. Orderings and
There are 20 citations in total.

Details

Journal Section Olgu Sunumları
Authors

Ahmet Ocak Akdemir

M. Emin Özdemir This is me

Publication Date May 22, 2016
Published in Issue Year 2016 Volume: 2 Issue: 1

Cite

APA Akdemir, A. O., & Özdemir, M. E. (2016). INTEGRAL INEQUALITIES FOR SOME CONVEX FUNCTIONS. Eastern Anatolian Journal of Science, 2(1), 1-6.
AMA Akdemir AO, Özdemir ME. INTEGRAL INEQUALITIES FOR SOME CONVEX FUNCTIONS. Eastern Anatolian Journal of Science. May 2016;2(1):1-6.
Chicago Akdemir, Ahmet Ocak, and M. Emin Özdemir. “INTEGRAL INEQUALITIES FOR SOME CONVEX FUNCTIONS”. Eastern Anatolian Journal of Science 2, no. 1 (May 2016): 1-6.
EndNote Akdemir AO, Özdemir ME (May 1, 2016) INTEGRAL INEQUALITIES FOR SOME CONVEX FUNCTIONS. Eastern Anatolian Journal of Science 2 1 1–6.
IEEE A. O. Akdemir and M. E. Özdemir, “INTEGRAL INEQUALITIES FOR SOME CONVEX FUNCTIONS”, Eastern Anatolian Journal of Science, vol. 2, no. 1, pp. 1–6, 2016.
ISNAD Akdemir, Ahmet Ocak - Özdemir, M. Emin. “INTEGRAL INEQUALITIES FOR SOME CONVEX FUNCTIONS”. Eastern Anatolian Journal of Science 2/1 (May 2016), 1-6.
JAMA Akdemir AO, Özdemir ME. INTEGRAL INEQUALITIES FOR SOME CONVEX FUNCTIONS. Eastern Anatolian Journal of Science. 2016;2:1–6.
MLA Akdemir, Ahmet Ocak and M. Emin Özdemir. “INTEGRAL INEQUALITIES FOR SOME CONVEX FUNCTIONS”. Eastern Anatolian Journal of Science, vol. 2, no. 1, 2016, pp. 1-6.
Vancouver Akdemir AO, Özdemir ME. INTEGRAL INEQUALITIES FOR SOME CONVEX FUNCTIONS. Eastern Anatolian Journal of Science. 2016;2(1):1-6.