Research Article
BibTex RIS Cite
Year 2019, Volume: 5 Issue: 1, 33 - 42, 27.06.2019

Abstract

References

  • [1] M. Brack and P. Quentin, Phys. Lett. B 52, 159 (1974).
  • [2] U. Mosel, P. G. Zint and K. H. Passler, Nucl. Phys. A 236 252 (1974).
  • [3] P. Quentin and H. Flocard, Ann. Rev. Nucl. Sci. 28, 523 (1978).
  • [4] G. La Rana, C. Ng, Amand Faessler, L. Rikus, R. Sartor, M. Barranco and X. Vias, Nucl.Phys. A 414, 309-315 (1984).
  • [5] M. Aygun, J. Korean Phys. Soc. 73, 1255-1262 (2018).
  • [6] M. Aygun, J. Korean Phys. Soc. 66, 1816-1821 (2015).
  • [7] L. Guo-Qiang and X. Gong-Ou, Phys. Rev. C 41, 169 (1990).
  • [8] D. Bandyopadhyay, S. K. Samaddar, R. Saha and J. N. De, Nucl. Phys. A 539, 370-380(1992).
  • [9] A. Osman and S. S. Abdel-Aziz, Acta Phys. Hung. 67, 367-379 (1990).
  • [10] L. R. Gasques, A. S. Freitas, L. C. Chamon, J. R. B. Oliveira, N. H. Medina, V. Scarduelli,E. S. Rossi, Jr., M. A. G. Alvarez, V. A. B. Zagatto, J. Lubian, G. P. A. Nobre, I. Padronand B. V. Carlson, Phys. Rev. C 97, 034629 (2018).
  • [11] G. R. Satchler, Direct Nuclear Reactions, Oxford University Press, Oxford, 1983.
  • [12] R. K. Gupta, D. Singh and W. Greiner, Phys. Rev. C 75, 024603 (2007).
  • [13] S. Shlomo and J. B. Natowitz, Phys. Rev. C 44, 2878 (1991).
  • [14] I. J. Thompson, Comput. Phys. Rep. 7, 167 (1988).
  • [15] J. Cook, Comput. Phys. Commun. 25, 125 (1982).

Temperature dependent calculations of optical potential in elastic scattering cross section basis: an application to 10B + 120Sn reaction

Year 2019, Volume: 5 Issue: 1, 33 - 42, 27.06.2019

Abstract

We examine the effect of temperature on the elastic scattering angular distributions of 10B +


120Sn reaction. For this, we use two-parameter fermi density distribution for both 10B and 120Sn


nuclei as a function of temperature (T = 0, 1, 2, 3, 4, 5, 6, 7 MeV). We obtain the real potentials


by using these density distributions within the double folding model based on the optical model.


The imaginary part of the optical potential is considered as Woods-Saxon potential. We calculate


the elastic scattering angular distributions for all the investigated cases. To see differences between


the theoretical results, we compare our results with the experimental data. Then, we discuss the


relationship between different root mean square (rms) radii of the nuclei. Finally, we give volume


integrals and cross sections according to various temperature values.

References

  • [1] M. Brack and P. Quentin, Phys. Lett. B 52, 159 (1974).
  • [2] U. Mosel, P. G. Zint and K. H. Passler, Nucl. Phys. A 236 252 (1974).
  • [3] P. Quentin and H. Flocard, Ann. Rev. Nucl. Sci. 28, 523 (1978).
  • [4] G. La Rana, C. Ng, Amand Faessler, L. Rikus, R. Sartor, M. Barranco and X. Vias, Nucl.Phys. A 414, 309-315 (1984).
  • [5] M. Aygun, J. Korean Phys. Soc. 73, 1255-1262 (2018).
  • [6] M. Aygun, J. Korean Phys. Soc. 66, 1816-1821 (2015).
  • [7] L. Guo-Qiang and X. Gong-Ou, Phys. Rev. C 41, 169 (1990).
  • [8] D. Bandyopadhyay, S. K. Samaddar, R. Saha and J. N. De, Nucl. Phys. A 539, 370-380(1992).
  • [9] A. Osman and S. S. Abdel-Aziz, Acta Phys. Hung. 67, 367-379 (1990).
  • [10] L. R. Gasques, A. S. Freitas, L. C. Chamon, J. R. B. Oliveira, N. H. Medina, V. Scarduelli,E. S. Rossi, Jr., M. A. G. Alvarez, V. A. B. Zagatto, J. Lubian, G. P. A. Nobre, I. Padronand B. V. Carlson, Phys. Rev. C 97, 034629 (2018).
  • [11] G. R. Satchler, Direct Nuclear Reactions, Oxford University Press, Oxford, 1983.
  • [12] R. K. Gupta, D. Singh and W. Greiner, Phys. Rev. C 75, 024603 (2007).
  • [13] S. Shlomo and J. B. Natowitz, Phys. Rev. C 44, 2878 (1991).
  • [14] I. J. Thompson, Comput. Phys. Rep. 7, 167 (1988).
  • [15] J. Cook, Comput. Phys. Commun. 25, 125 (1982).
There are 15 citations in total.

Details

Primary Language English
Journal Section makaleler
Authors

Murat Aygun

Publication Date June 27, 2019
Published in Issue Year 2019 Volume: 5 Issue: 1

Cite

APA Aygun, M. (2019). Temperature dependent calculations of optical potential in elastic scattering cross section basis: an application to 10B + 120Sn reaction. Eastern Anatolian Journal of Science, 5(1), 33-42.
AMA Aygun M. Temperature dependent calculations of optical potential in elastic scattering cross section basis: an application to 10B + 120Sn reaction. Eastern Anatolian Journal of Science. June 2019;5(1):33-42.
Chicago Aygun, Murat. “Temperature Dependent Calculations of Optical Potential in Elastic Scattering Cross Section Basis: An Application to 10B + 120Sn Reaction”. Eastern Anatolian Journal of Science 5, no. 1 (June 2019): 33-42.
EndNote Aygun M (June 1, 2019) Temperature dependent calculations of optical potential in elastic scattering cross section basis: an application to 10B + 120Sn reaction. Eastern Anatolian Journal of Science 5 1 33–42.
IEEE M. Aygun, “Temperature dependent calculations of optical potential in elastic scattering cross section basis: an application to 10B + 120Sn reaction”, Eastern Anatolian Journal of Science, vol. 5, no. 1, pp. 33–42, 2019.
ISNAD Aygun, Murat. “Temperature Dependent Calculations of Optical Potential in Elastic Scattering Cross Section Basis: An Application to 10B + 120Sn Reaction”. Eastern Anatolian Journal of Science 5/1 (June 2019), 33-42.
JAMA Aygun M. Temperature dependent calculations of optical potential in elastic scattering cross section basis: an application to 10B + 120Sn reaction. Eastern Anatolian Journal of Science. 2019;5:33–42.
MLA Aygun, Murat. “Temperature Dependent Calculations of Optical Potential in Elastic Scattering Cross Section Basis: An Application to 10B + 120Sn Reaction”. Eastern Anatolian Journal of Science, vol. 5, no. 1, 2019, pp. 33-42.
Vancouver Aygun M. Temperature dependent calculations of optical potential in elastic scattering cross section basis: an application to 10B + 120Sn reaction. Eastern Anatolian Journal of Science. 2019;5(1):33-42.