Research Article
BibTex RIS Cite
Year 2022, Volume: 8 Issue: 2, 37 - 44, 15.12.2022

Abstract

References

  • AGOSTINELLI, S., et.al. (2003). GEANT4 - A simulation toolkit. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.
  • AYGÜN, B., ALAYLAR, B., TURHAN, K., ŞAKAR, E., KARADAYI, M., SAYYED, M.I., PELİT, E., GÜLLÜCE, M., KARABULUT, A., TURGUT, Z., ALIM, B. (2020). Investigation of neutron and gamma radiation protective characteristics of synthesized quinoline derivatives. International journal of radiatıon biology.96 (11), 1423-1434.
  • ALIM, B., ÖZPOLAT, ÖF., ŞAKAR, E., HAN, İ., ARSLAN, İ., SİNGH, VP., DEMİR, L. (2022). Precipitation-hardening stainless steels: Potential use radiation shielding materials. Radiation Physics and Chemistry. 194.110009.
  • AYGÜN, B., (2019 a). High alloyed new stainless steel shielding material for gamma and fast neutron radiation. Nuclear Engineering and Technology. 52(3), 647-653.
  • AYGÜN, B., KORKUT, T., KARABULUT, A., GENCEL, O. (2015). Production and Neutron Irradiation Tests on a New Epoxy/Molybdenum Composite. International Journal of Polymer Analysis and Characterization. 20(4), 323-329.
  • AYGÜN, B., ŞAKAR, E., CİNAN, E., YORGUN, NY., SAYYED, MI., AGAR, O., KARABULUT, A. (2020 a). Development and production of metal oxide doped glasses for gamma ray and fast neutron shielding. Radiation Physics and Chemistry.174, 108897.
  • AYGÜN, B., KARABULUT, A. (2018). Development and Production of High Heat Resistant Heavy Concrete Shielding Materials for Neutron and Gamma Radiation. Eastern Anatolian Journal of Science 4 (2), 24-30.
  • AYGÜN, B., ŞAKAR, E., KARABULUT, A., ALIM, B., SAYYED, MI., SİNGH, VP., YORGUN, NY., ÖZPOLAT, ÖF. (2020b). Development of SiO2 based doped with LiF, Cr2O3, CoO4 and B2O3 glasses for gamma and fast neutron shielding. Radiochimica Acta. 109(2), 143-151.
  • AYGÜN, B., ŞAKAR, E., KORKUT, T., SAYYED, MI., KARABULUT, A. (2019c). New high temperature resistant heavy concretes for fast neutron and gamma radiation shielding. Radiochimica Acta. 107(4).
  • AYGÜN, B., ŞAKAR, E., KORKUT, T., SAYYED, MI., KARABULUT, A., ZAİD, MHM. (2019b). Fabrication of Ni, Cr, W reinforced new high alloyed stainless steels for radiation shielding applications. Results in Physics. 12, 1-6.
  • BİLİCİ, İ., AYGÜN, B., DENİZ, CU., ÖZ, B., SAYYED, MI., KARABULUT, A. (2021). Fabrication of novel neutron shielding materials: Polypropylene composites containing colemanite, tincal and ulexite. Progress in Nuclear Energy. 141,103954.
  • EİD, EA., SADAWY, MM., REDA, AM. (2022). Computing the dynamic friction coefficient and evaluation of radiation shielding performance for AISI 304 stainless steel. Materials Chemistry and Physics. 277, 125446.
  • EL-AGAWANY, FI., EKİNCİ, N., MAHMOUD, KA., SARITAŞ, S., AYGÜN, B., AHMED, EM., RAMMAH, YS. (2021). Gamma-ray shielding capacity of different B4C-, Re-, and Ni-based superalloys. European Physical Journal Plus. 136.527.
  • ALIM, B., ÖZPOLAT, ÖF., ŞAKAR, E., HAN, İ., ARSLAN, İ., SİNGH, VP., DEMİR, L. (2022). Precipitation-hardening stainless steels: Potential use radiation shielding materials. Radiation Physics and Chemistry. 194.110009.
  • AYGÜN, B., (2019 a). High alloyAYGÜN, B., KORKUT, T., KARABULUT, A., GENCEL, O. (2015). Production and Neutron Irradiation Tests on a New Epoxy/Molybdenum Composite. International Journal of Polymer Analysis and Characterization. 20(4), 323-329.
  • AYGÜN, B., ŞAKAR, E., CİNAN, E., YORGUN, NY., SAYYED, MI., AGAR, O., KARABULUT, A. (2020 a). Development and production of metal oxide doped glasses for gamma ray and fast neutron shielding. Radiation Physics and Chemistry.174, 108897.
  • AYGÜN, B., KARABULUT, A. (2018). Development and Production of High Heat Resistant Heavy Concrete Shielding Materials for Neutron and Gamma Radiation. Eastern Anatolian Journal of Science 4 (2), 24-30.
  • AYGÜN, B., ŞAKAR, E., KARABULUT, A., ALIM, B., SAYYED, MI., SİNGH, VP., YORGUN, NY., ÖZPOLAT, ÖF. (2020b). Development of SiO2 based doped with LiF, Cr2O3, CoO4 and B2O3 glasses for gamma and fast neutron shielding. Radiochimica Acta. 109(2), 143-151.
  • AYGÜN, B., ŞAKAR, E., KORKUT, T., SAYYED, MI., KARABULUT, A. (2019c). New high temperature resistant heavy concretes for fast neutron and gamma radiation shielding. Radiochimica Acta. 107(4).
  • AYGÜN, B., ŞAKAR, E., KORKUT, T., SAYYED, MI., KARABULUT, A., ZAİD, MHM. (2019b). Fabrication of Ni, Cr, W reinforced new high alloyed stainless steels for radiation shielding applications. Results in Physics. 12, 1-6.
  • BİLİCİ, İ., AYGÜN, B., DENİZ, CU., ÖZ, B., SAYYED, MI., KARABULUT, A. (2021). Fabrication of novel neutron shielding materials: Polypropylene composites containing colemanite, tincal and ulexite. Progress in Nuclear Energy. 141,103954.
  • EİD, EA., SADAWY, MM., REDA, AM. (2022). Computing the dynamic friction coefficient and evaluation of radiation shielding performance for AISI 304 stainless steel. Materials Chemistry and Physics. 277, 125446.
  • EL-AGAWANY, FI., EKİNCİ, N., MAHMOUD, KA., SARITAŞ, S., AYGÜN, B., AHMED, EM., RAMMAH, YS. (2021). Gamma-ray shielding capacity of different B4C-, Re-, and Ni-based superalloys. European Physical Journal Plus. 136.527.
  • ELSAFİ, M., EL-NAHAL, MA., SAYYED, MI., SALEH, IH., ABBAS, MI. (2021). Effect of bulk and nanoparticle Bi2O3 on attenuation capability of radiation shielding glass. Ceramics International. 47(14), 19651–19658.
  • GUREL. S., YAGCİ, MB., CANADİNC, D., GERSTEİN, G., BAL, B., MAİER, HJ. (2021). Fracture behavior of novel biomedical Ti-based high entropy alloys under impact loading. Materials Science and Engineering: A. 803,140456.
  • HU, G., SHİ, G., HU, H., YANG, Q., YU, B., SUN, W. (2020). Development of gradient composite shielding material for shielding neutrons and gamma rays. Nuclear Engineering and Technology. 52(10), 2387-2393.
  • KAREER A, WAİTE JC, Lİ B, COUET A, ARMSTRONG DEJ, WİLKİNSON AJ. (2019). Short communication: ‘Low activation, refractory, high entropy alloys for nuclear applications.’ Journal of Nuclear Materials. 526, 151744.
  • KİNG DJM, CHEUNG STY, HUMPHRY-BAKER SA, PARKİN C, COUET A, CORTİE MB, LUMPKİN GR, MİDDLEBURGH SC, KNOWLES AJ. (2019). High temperature, low neutron cross-section high-entropy alloys in the Nb-Ti-V-Zr system. Acta Materialia. 166, 435–446.
  • KİNG, D.; BURR, P.; OBBARD, E.; MİDDLEBURGH, S. DFT. (2017). Study of the hexagonal high-entropy alloy fission product system. J. Nucl.Mater. 488, 70–74.
  • KİNNO M, KİMURA KI, NAKAMURA T. (2002). Raw materials for low-activation concrete neutron shields. Journal of Nuclear Science and Technology. 39(12), 1275–1280.
  • KORKUT T, AYGÜN B, BAYRAM Ö, KARABULUT A. (2015). Study of neutron attenuation properties of super alloys with added rhenium. Journal of Radioanalytical and Nuclear Chemistry. 306, 119–122.
  • MARY SJ, NAGALAKSHMİ R, EPSHİBA R. (2015). High entropy Alloys propertıes and ıts applications-an overvıew. High entropy alloys Section B-Review Eur Chem Bull. 4(6), 279–284.
  • ALIM, B., ÖZPOLAT, ÖF., ŞAKAR, E., HAN, İ., ARSLAN, İ., SİNGH, VP., DEMİR, L. (2022). Precipitation-hardening stainless steels: Potential use radiation shielding materials. Radiation Physics and Chemistry. 194.110009.
  • AYGÜN, B., (2019 a). High alloyed new stainless steel shielding material for gamma and fast neutron radiation. Nuclear Engineering and Technology. 52(3), 647-653.
  • AYGÜN, B., KORKUT, T., KARABULUT, A., GENCEL, O. (2015). Production and Neutron Irradiation Tests on a New Epoxy/Molybdenum Composite. International Journal of Polymer Analysis and Characterization. 20(4), 323-329.
  • AYGÜN, B., ŞAKAR, E., CİNAN, E., YORGUN, NY., SAYYED, MI., AGAR, O., KARABULUT, A. (2020 a). Development and production of metal oxide doped glasses for gamma ray and fast neutron shielding. Radiation Physics and Chemistry.174, 108897.
  • AYGÜN, B., KARABULUT, A. (2018). Development and Production of High Heat Resistant Heavy Concrete Shielding Materials for Neutron and Gamma Radiation. Eastern Anatolian Journal of Science 4 (2), 24-30.
  • AYGÜN, B., ŞAKAR, E., KARABULUT, A., ALIM, B., SAYYED, MI., SİNGH, VP., YORGUN, NY., ÖZPOLAT, ÖF. (2020b). Development of SiO2 based doped with LiF, Cr2O3, CoO4 and B2O3 glasses for gamma and fast neutron shielding. Radiochimica Acta. 109(2), 143-151.
  • AYGÜN, B., ŞAKAR, E., KORKUT, T., SAYYED, MI., KARABULUT, A. (2019c). New high temperature resistant heavy concretes for fast neutron and gamma radiation shielding. Radiochimica Acta. 107(4).
  • AYGÜN, B., ŞAKAR, E., KORKUT, T., SAYYED, MI., KARABULUT, A., ZAİD, MHM. (2019b). Fabrication of Ni, Cr, W reinforced new high alloyed stainless steels for radiation shielding applications. Results in Physics. 12, 1-6.
  • BİLİCİ, İ., AYGÜN, B., DENİZ, CU., ÖZ, B., SAYYED, MI., KARABULUT, A. (2021). Fabrication of novel neutron shielding materials: Polypropylene composites containing colemanite, tincal and ulexite. Progress in Nuclear Energy. 141,103954.
  • EİD, EA., SADAWY, MM., REDA, AM. (2022). Computing the dynamic friction coefficient and evaluation of radiation shielding performance for AISI 304 stainless steel. Materials Chemistry and Physics. 277, 125446.
  • EL-AGAWANY, FI., EKİNCİ, N., MAHMOUD, KA., SARITAŞ, S., AYGÜN, B., AHMED, EM., RAMMAH, YS. (2021). Gamma-ray shielding capacity of different B4C-, Re-, and Ni-based superalloys. European Physical Journal Plus. 136.527.
  • ELSAFİ, M., EL-NAHAL, MA., SAYYED, MI., SALEH, IH., ABBAS, MI. (2021). Effect of bulk and nanoparticle Bi2O3 on attenuation capability of radiation shielding glass. Ceramics International. 47(14), 19651–19658.
  • GUREL. S., YAGCİ, MB., CANADİNC, D., GERSTEİN, G., BAL, B., MAİER, HJ. (2021). Fracture behavior of novel biomedical Ti-based high entropy alloys under impact loading. Materials Science and Engineering: A. 803,140456.
  • HU, G., SHİ, G., HU, H., YANG, Q., YU, B., SUN, W. (2020). Development of gradient composite shielding material for shielding neutrons and gamma rays. Nuclear Engineering and Technology. 52(10), 2387-2393.
  • KAREER A, WAİTE JC, Lİ B, COUET A, ARMSTRONG DEJ, WİLKİNSON AJ. (2019). Short communication: ‘Low activation, refractory, high entropy alloys for nuclear applications.’ Journal of Nuclear Materials. 526, 151744.
  • KİNG DJM, CHEUNG STY, HUMPHRY-BAKER SA, PARKİN C, COUET A, CORTİE MB, LUMPKİN GR, MİDDLEBURGH SC, KNOWLES AJ. (2019). High temperature, low neutron cross-section high-entropy alloys in the Nb-Ti-V-Zr system. Acta Materialia. 166, 435–446.
  • KİNG, D.; BURR, P.; OBBARD, E.; MİDDLEBURGH, S. DFT. (2017). Study of the hexagonal high-entropy alloy fission product system. J. Nucl.Mater. 488, 70–74.
  • KİNNO M, KİMURA KI, NAKAMURA T. (2002). Raw materials for low-activation concrete neutron shields. Journal of Nuclear Science and Technology. 39(12), 1275–1280.
  • KORKUT T, AYGÜN B, BAYRAM Ö, KARABULUT A. (2015). Study of neutron attenuation properties of super alloys with added rhenium. Journal of Radioanalytical and Nuclear Chemistry. 306, 119–122.
  • MARY SJ, NAGALAKSHMİ R, EPSHİBA R. (2015). High entropy Alloys propertıes and ıts applications-an overvıew. High entropy alloys Section B-Review Eur Chem Bull. 4(6), 279–284.
  • TEKİN, HUSEYİN OZAN, ALMİSNED, GHADA, ZAKALY, HESHAM M. H., ZAMİL, ABDALLAH, KHOUCHEİCH, DALİA, BİLAL, GHAİDA, AL-SAMMARRAİE, LUBNA, ISSA, SHAMS A. M., AL-BURİAHİ, MOHAMMED SULTAN AND ENE, ANTOANETA. (2022). Gamma, neutron, and heavy charged ion shielding properties of Er3+-doped and Sm3+-doped zinc borate glasses" Open Chemistry. 20 (1),130-145.
  • PİCKERİNG EJ, CARRUTHERS AW, BARRON PJ, MİDDLEBURGH SC, ARMSTRONG DEJ, GANDY AS. (2021). High-entropy alloys for advanced nuclear applications. Entropy. 23(1), 1-28.
  • RAMMAH YS, MAHMOUD KA, MOHAMMED FQ, SAYYED MI, TASHLYKOV OL, EL-MALLAWANY R. (2021). Gamma ray exposure buildup factor and shielding features for some binary alloys using MCNP-5 simulation code. Nuclear Engineering and Technology. 53(8), 2661-2668.
  • SAHADATH, H., MOLLAH, A.S., KABIR, K.A., FAZLUL HUQ, M. (2015). Calculation of the different shielding properties of locally developed ilmenite-magnetite (I-M) concrete. Radioprotection. 50 (2), 203–207.
  • SARİYER D, KÜÇER R. (2020). Effect of Different Materials to Concrete as Neutron Shielding Application. Acta Physıca Polonıca A. 137, 1-4. SCHOBER H. (2014). An introduction to the theory of nuclear neutron scattering in condensed matter. Journal of Neutron Research. 17(3), 109-357.
  • SİNGH VP, BADİGER NM. (2014). Gamma ray and neutron shielding properties of some alloy materials. Annals of Nuclear Energy. 64, 301-310.
  • WANG KAİZHAO, HU J, CHEN T, ZHANG W, FAN H, FENG Y, ZHAO Z, WANG KAİJUN. (2021). Flexible Low-Melting Point Radiation Shielding Materials: Soft Elastomers with GaInSnPbBi High-Entropy Alloy Inclusions. Macromolecular Materials and Engineering. 306(12), 2100457.
  • WRİXON AD. (2013). Radiation. In: Safety at Work. Routledge. London 18.
  • YİN S, WANG H, WANG S, ZHANG J, ZHU Y. (2022). Effect of B2O3 on the Radiation Shielding Performance of Telluride Lead Glass System. Crystals. 178 (12), 2-10.
  • Zinkle, S. Radiation-Induced Effects on Microstructure. InComprehensive Nuclear Materials; Elsevier: Amsterdam, The Netherlands,2012; pp. 65–98

Investigation of epithermal and fast neutron shielding properties of Some High Entropy Alloys Containing Ti, Hf, Nb, and Zr

Year 2022, Volume: 8 Issue: 2, 37 - 44, 15.12.2022

Abstract

High entropy alloys often have excellent mechanical properties that conventional alloys based on one or two elemental combinations do not have. It is necessary to investigate whether these alloys can be used for nuclear applications with their properties such as high strength, fracture toughness, high corrosion and wear resistance. In this study, the thermal and fast neutron absorption properties of high entropy alloys with three different contents including Ti, Ta, Hf, Nb, and Zr elements were investigated. Their usability for nuclear applications has been demonstrated. In order to understand whether a material is neutron shielding, important neutron attenuation parameters such as effective removal cross section, half value layer, mean free path and neutron transmission factor (NTF) need to be determined. These reduction parameters were theoretically found with the Monte Carlo simulation GEANT4 code for epithermal and fast neutrons. It was found that Nb25 Ti25Hf25Ta25 has the best neutron shielding capacity among the investigated High entropy alloys. According to found all the results in the present work, we suggest that the all high entropy alloy samples can be used against any neutron leaks in nuclear operations.

References

  • AGOSTINELLI, S., et.al. (2003). GEANT4 - A simulation toolkit. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.
  • AYGÜN, B., ALAYLAR, B., TURHAN, K., ŞAKAR, E., KARADAYI, M., SAYYED, M.I., PELİT, E., GÜLLÜCE, M., KARABULUT, A., TURGUT, Z., ALIM, B. (2020). Investigation of neutron and gamma radiation protective characteristics of synthesized quinoline derivatives. International journal of radiatıon biology.96 (11), 1423-1434.
  • ALIM, B., ÖZPOLAT, ÖF., ŞAKAR, E., HAN, İ., ARSLAN, İ., SİNGH, VP., DEMİR, L. (2022). Precipitation-hardening stainless steels: Potential use radiation shielding materials. Radiation Physics and Chemistry. 194.110009.
  • AYGÜN, B., (2019 a). High alloyed new stainless steel shielding material for gamma and fast neutron radiation. Nuclear Engineering and Technology. 52(3), 647-653.
  • AYGÜN, B., KORKUT, T., KARABULUT, A., GENCEL, O. (2015). Production and Neutron Irradiation Tests on a New Epoxy/Molybdenum Composite. International Journal of Polymer Analysis and Characterization. 20(4), 323-329.
  • AYGÜN, B., ŞAKAR, E., CİNAN, E., YORGUN, NY., SAYYED, MI., AGAR, O., KARABULUT, A. (2020 a). Development and production of metal oxide doped glasses for gamma ray and fast neutron shielding. Radiation Physics and Chemistry.174, 108897.
  • AYGÜN, B., KARABULUT, A. (2018). Development and Production of High Heat Resistant Heavy Concrete Shielding Materials for Neutron and Gamma Radiation. Eastern Anatolian Journal of Science 4 (2), 24-30.
  • AYGÜN, B., ŞAKAR, E., KARABULUT, A., ALIM, B., SAYYED, MI., SİNGH, VP., YORGUN, NY., ÖZPOLAT, ÖF. (2020b). Development of SiO2 based doped with LiF, Cr2O3, CoO4 and B2O3 glasses for gamma and fast neutron shielding. Radiochimica Acta. 109(2), 143-151.
  • AYGÜN, B., ŞAKAR, E., KORKUT, T., SAYYED, MI., KARABULUT, A. (2019c). New high temperature resistant heavy concretes for fast neutron and gamma radiation shielding. Radiochimica Acta. 107(4).
  • AYGÜN, B., ŞAKAR, E., KORKUT, T., SAYYED, MI., KARABULUT, A., ZAİD, MHM. (2019b). Fabrication of Ni, Cr, W reinforced new high alloyed stainless steels for radiation shielding applications. Results in Physics. 12, 1-6.
  • BİLİCİ, İ., AYGÜN, B., DENİZ, CU., ÖZ, B., SAYYED, MI., KARABULUT, A. (2021). Fabrication of novel neutron shielding materials: Polypropylene composites containing colemanite, tincal and ulexite. Progress in Nuclear Energy. 141,103954.
  • EİD, EA., SADAWY, MM., REDA, AM. (2022). Computing the dynamic friction coefficient and evaluation of radiation shielding performance for AISI 304 stainless steel. Materials Chemistry and Physics. 277, 125446.
  • EL-AGAWANY, FI., EKİNCİ, N., MAHMOUD, KA., SARITAŞ, S., AYGÜN, B., AHMED, EM., RAMMAH, YS. (2021). Gamma-ray shielding capacity of different B4C-, Re-, and Ni-based superalloys. European Physical Journal Plus. 136.527.
  • ALIM, B., ÖZPOLAT, ÖF., ŞAKAR, E., HAN, İ., ARSLAN, İ., SİNGH, VP., DEMİR, L. (2022). Precipitation-hardening stainless steels: Potential use radiation shielding materials. Radiation Physics and Chemistry. 194.110009.
  • AYGÜN, B., (2019 a). High alloyAYGÜN, B., KORKUT, T., KARABULUT, A., GENCEL, O. (2015). Production and Neutron Irradiation Tests on a New Epoxy/Molybdenum Composite. International Journal of Polymer Analysis and Characterization. 20(4), 323-329.
  • AYGÜN, B., ŞAKAR, E., CİNAN, E., YORGUN, NY., SAYYED, MI., AGAR, O., KARABULUT, A. (2020 a). Development and production of metal oxide doped glasses for gamma ray and fast neutron shielding. Radiation Physics and Chemistry.174, 108897.
  • AYGÜN, B., KARABULUT, A. (2018). Development and Production of High Heat Resistant Heavy Concrete Shielding Materials for Neutron and Gamma Radiation. Eastern Anatolian Journal of Science 4 (2), 24-30.
  • AYGÜN, B., ŞAKAR, E., KARABULUT, A., ALIM, B., SAYYED, MI., SİNGH, VP., YORGUN, NY., ÖZPOLAT, ÖF. (2020b). Development of SiO2 based doped with LiF, Cr2O3, CoO4 and B2O3 glasses for gamma and fast neutron shielding. Radiochimica Acta. 109(2), 143-151.
  • AYGÜN, B., ŞAKAR, E., KORKUT, T., SAYYED, MI., KARABULUT, A. (2019c). New high temperature resistant heavy concretes for fast neutron and gamma radiation shielding. Radiochimica Acta. 107(4).
  • AYGÜN, B., ŞAKAR, E., KORKUT, T., SAYYED, MI., KARABULUT, A., ZAİD, MHM. (2019b). Fabrication of Ni, Cr, W reinforced new high alloyed stainless steels for radiation shielding applications. Results in Physics. 12, 1-6.
  • BİLİCİ, İ., AYGÜN, B., DENİZ, CU., ÖZ, B., SAYYED, MI., KARABULUT, A. (2021). Fabrication of novel neutron shielding materials: Polypropylene composites containing colemanite, tincal and ulexite. Progress in Nuclear Energy. 141,103954.
  • EİD, EA., SADAWY, MM., REDA, AM. (2022). Computing the dynamic friction coefficient and evaluation of radiation shielding performance for AISI 304 stainless steel. Materials Chemistry and Physics. 277, 125446.
  • EL-AGAWANY, FI., EKİNCİ, N., MAHMOUD, KA., SARITAŞ, S., AYGÜN, B., AHMED, EM., RAMMAH, YS. (2021). Gamma-ray shielding capacity of different B4C-, Re-, and Ni-based superalloys. European Physical Journal Plus. 136.527.
  • ELSAFİ, M., EL-NAHAL, MA., SAYYED, MI., SALEH, IH., ABBAS, MI. (2021). Effect of bulk and nanoparticle Bi2O3 on attenuation capability of radiation shielding glass. Ceramics International. 47(14), 19651–19658.
  • GUREL. S., YAGCİ, MB., CANADİNC, D., GERSTEİN, G., BAL, B., MAİER, HJ. (2021). Fracture behavior of novel biomedical Ti-based high entropy alloys under impact loading. Materials Science and Engineering: A. 803,140456.
  • HU, G., SHİ, G., HU, H., YANG, Q., YU, B., SUN, W. (2020). Development of gradient composite shielding material for shielding neutrons and gamma rays. Nuclear Engineering and Technology. 52(10), 2387-2393.
  • KAREER A, WAİTE JC, Lİ B, COUET A, ARMSTRONG DEJ, WİLKİNSON AJ. (2019). Short communication: ‘Low activation, refractory, high entropy alloys for nuclear applications.’ Journal of Nuclear Materials. 526, 151744.
  • KİNG DJM, CHEUNG STY, HUMPHRY-BAKER SA, PARKİN C, COUET A, CORTİE MB, LUMPKİN GR, MİDDLEBURGH SC, KNOWLES AJ. (2019). High temperature, low neutron cross-section high-entropy alloys in the Nb-Ti-V-Zr system. Acta Materialia. 166, 435–446.
  • KİNG, D.; BURR, P.; OBBARD, E.; MİDDLEBURGH, S. DFT. (2017). Study of the hexagonal high-entropy alloy fission product system. J. Nucl.Mater. 488, 70–74.
  • KİNNO M, KİMURA KI, NAKAMURA T. (2002). Raw materials for low-activation concrete neutron shields. Journal of Nuclear Science and Technology. 39(12), 1275–1280.
  • KORKUT T, AYGÜN B, BAYRAM Ö, KARABULUT A. (2015). Study of neutron attenuation properties of super alloys with added rhenium. Journal of Radioanalytical and Nuclear Chemistry. 306, 119–122.
  • MARY SJ, NAGALAKSHMİ R, EPSHİBA R. (2015). High entropy Alloys propertıes and ıts applications-an overvıew. High entropy alloys Section B-Review Eur Chem Bull. 4(6), 279–284.
  • ALIM, B., ÖZPOLAT, ÖF., ŞAKAR, E., HAN, İ., ARSLAN, İ., SİNGH, VP., DEMİR, L. (2022). Precipitation-hardening stainless steels: Potential use radiation shielding materials. Radiation Physics and Chemistry. 194.110009.
  • AYGÜN, B., (2019 a). High alloyed new stainless steel shielding material for gamma and fast neutron radiation. Nuclear Engineering and Technology. 52(3), 647-653.
  • AYGÜN, B., KORKUT, T., KARABULUT, A., GENCEL, O. (2015). Production and Neutron Irradiation Tests on a New Epoxy/Molybdenum Composite. International Journal of Polymer Analysis and Characterization. 20(4), 323-329.
  • AYGÜN, B., ŞAKAR, E., CİNAN, E., YORGUN, NY., SAYYED, MI., AGAR, O., KARABULUT, A. (2020 a). Development and production of metal oxide doped glasses for gamma ray and fast neutron shielding. Radiation Physics and Chemistry.174, 108897.
  • AYGÜN, B., KARABULUT, A. (2018). Development and Production of High Heat Resistant Heavy Concrete Shielding Materials for Neutron and Gamma Radiation. Eastern Anatolian Journal of Science 4 (2), 24-30.
  • AYGÜN, B., ŞAKAR, E., KARABULUT, A., ALIM, B., SAYYED, MI., SİNGH, VP., YORGUN, NY., ÖZPOLAT, ÖF. (2020b). Development of SiO2 based doped with LiF, Cr2O3, CoO4 and B2O3 glasses for gamma and fast neutron shielding. Radiochimica Acta. 109(2), 143-151.
  • AYGÜN, B., ŞAKAR, E., KORKUT, T., SAYYED, MI., KARABULUT, A. (2019c). New high temperature resistant heavy concretes for fast neutron and gamma radiation shielding. Radiochimica Acta. 107(4).
  • AYGÜN, B., ŞAKAR, E., KORKUT, T., SAYYED, MI., KARABULUT, A., ZAİD, MHM. (2019b). Fabrication of Ni, Cr, W reinforced new high alloyed stainless steels for radiation shielding applications. Results in Physics. 12, 1-6.
  • BİLİCİ, İ., AYGÜN, B., DENİZ, CU., ÖZ, B., SAYYED, MI., KARABULUT, A. (2021). Fabrication of novel neutron shielding materials: Polypropylene composites containing colemanite, tincal and ulexite. Progress in Nuclear Energy. 141,103954.
  • EİD, EA., SADAWY, MM., REDA, AM. (2022). Computing the dynamic friction coefficient and evaluation of radiation shielding performance for AISI 304 stainless steel. Materials Chemistry and Physics. 277, 125446.
  • EL-AGAWANY, FI., EKİNCİ, N., MAHMOUD, KA., SARITAŞ, S., AYGÜN, B., AHMED, EM., RAMMAH, YS. (2021). Gamma-ray shielding capacity of different B4C-, Re-, and Ni-based superalloys. European Physical Journal Plus. 136.527.
  • ELSAFİ, M., EL-NAHAL, MA., SAYYED, MI., SALEH, IH., ABBAS, MI. (2021). Effect of bulk and nanoparticle Bi2O3 on attenuation capability of radiation shielding glass. Ceramics International. 47(14), 19651–19658.
  • GUREL. S., YAGCİ, MB., CANADİNC, D., GERSTEİN, G., BAL, B., MAİER, HJ. (2021). Fracture behavior of novel biomedical Ti-based high entropy alloys under impact loading. Materials Science and Engineering: A. 803,140456.
  • HU, G., SHİ, G., HU, H., YANG, Q., YU, B., SUN, W. (2020). Development of gradient composite shielding material for shielding neutrons and gamma rays. Nuclear Engineering and Technology. 52(10), 2387-2393.
  • KAREER A, WAİTE JC, Lİ B, COUET A, ARMSTRONG DEJ, WİLKİNSON AJ. (2019). Short communication: ‘Low activation, refractory, high entropy alloys for nuclear applications.’ Journal of Nuclear Materials. 526, 151744.
  • KİNG DJM, CHEUNG STY, HUMPHRY-BAKER SA, PARKİN C, COUET A, CORTİE MB, LUMPKİN GR, MİDDLEBURGH SC, KNOWLES AJ. (2019). High temperature, low neutron cross-section high-entropy alloys in the Nb-Ti-V-Zr system. Acta Materialia. 166, 435–446.
  • KİNG, D.; BURR, P.; OBBARD, E.; MİDDLEBURGH, S. DFT. (2017). Study of the hexagonal high-entropy alloy fission product system. J. Nucl.Mater. 488, 70–74.
  • KİNNO M, KİMURA KI, NAKAMURA T. (2002). Raw materials for low-activation concrete neutron shields. Journal of Nuclear Science and Technology. 39(12), 1275–1280.
  • KORKUT T, AYGÜN B, BAYRAM Ö, KARABULUT A. (2015). Study of neutron attenuation properties of super alloys with added rhenium. Journal of Radioanalytical and Nuclear Chemistry. 306, 119–122.
  • MARY SJ, NAGALAKSHMİ R, EPSHİBA R. (2015). High entropy Alloys propertıes and ıts applications-an overvıew. High entropy alloys Section B-Review Eur Chem Bull. 4(6), 279–284.
  • TEKİN, HUSEYİN OZAN, ALMİSNED, GHADA, ZAKALY, HESHAM M. H., ZAMİL, ABDALLAH, KHOUCHEİCH, DALİA, BİLAL, GHAİDA, AL-SAMMARRAİE, LUBNA, ISSA, SHAMS A. M., AL-BURİAHİ, MOHAMMED SULTAN AND ENE, ANTOANETA. (2022). Gamma, neutron, and heavy charged ion shielding properties of Er3+-doped and Sm3+-doped zinc borate glasses" Open Chemistry. 20 (1),130-145.
  • PİCKERİNG EJ, CARRUTHERS AW, BARRON PJ, MİDDLEBURGH SC, ARMSTRONG DEJ, GANDY AS. (2021). High-entropy alloys for advanced nuclear applications. Entropy. 23(1), 1-28.
  • RAMMAH YS, MAHMOUD KA, MOHAMMED FQ, SAYYED MI, TASHLYKOV OL, EL-MALLAWANY R. (2021). Gamma ray exposure buildup factor and shielding features for some binary alloys using MCNP-5 simulation code. Nuclear Engineering and Technology. 53(8), 2661-2668.
  • SAHADATH, H., MOLLAH, A.S., KABIR, K.A., FAZLUL HUQ, M. (2015). Calculation of the different shielding properties of locally developed ilmenite-magnetite (I-M) concrete. Radioprotection. 50 (2), 203–207.
  • SARİYER D, KÜÇER R. (2020). Effect of Different Materials to Concrete as Neutron Shielding Application. Acta Physıca Polonıca A. 137, 1-4. SCHOBER H. (2014). An introduction to the theory of nuclear neutron scattering in condensed matter. Journal of Neutron Research. 17(3), 109-357.
  • SİNGH VP, BADİGER NM. (2014). Gamma ray and neutron shielding properties of some alloy materials. Annals of Nuclear Energy. 64, 301-310.
  • WANG KAİZHAO, HU J, CHEN T, ZHANG W, FAN H, FENG Y, ZHAO Z, WANG KAİJUN. (2021). Flexible Low-Melting Point Radiation Shielding Materials: Soft Elastomers with GaInSnPbBi High-Entropy Alloy Inclusions. Macromolecular Materials and Engineering. 306(12), 2100457.
  • WRİXON AD. (2013). Radiation. In: Safety at Work. Routledge. London 18.
  • YİN S, WANG H, WANG S, ZHANG J, ZHU Y. (2022). Effect of B2O3 on the Radiation Shielding Performance of Telluride Lead Glass System. Crystals. 178 (12), 2-10.
  • Zinkle, S. Radiation-Induced Effects on Microstructure. InComprehensive Nuclear Materials; Elsevier: Amsterdam, The Netherlands,2012; pp. 65–98
There are 62 citations in total.

Details

Primary Language English
Journal Section makaleler
Authors

Bünyamin Aygün 0000-0002-9384-1540

Abdulhalik Karabulut 0000-0003-2290-9007

Publication Date December 15, 2022
Published in Issue Year 2022 Volume: 8 Issue: 2

Cite

APA Aygün, B., & Karabulut, A. (2022). Investigation of epithermal and fast neutron shielding properties of Some High Entropy Alloys Containing Ti, Hf, Nb, and Zr. Eastern Anatolian Journal of Science, 8(2), 37-44.
AMA Aygün B, Karabulut A. Investigation of epithermal and fast neutron shielding properties of Some High Entropy Alloys Containing Ti, Hf, Nb, and Zr. Eastern Anatolian Journal of Science. December 2022;8(2):37-44.
Chicago Aygün, Bünyamin, and Abdulhalik Karabulut. “Investigation of Epithermal and Fast Neutron Shielding Properties of Some High Entropy Alloys Containing Ti, Hf, Nb, and Zr”. Eastern Anatolian Journal of Science 8, no. 2 (December 2022): 37-44.
EndNote Aygün B, Karabulut A (December 1, 2022) Investigation of epithermal and fast neutron shielding properties of Some High Entropy Alloys Containing Ti, Hf, Nb, and Zr. Eastern Anatolian Journal of Science 8 2 37–44.
IEEE B. Aygün and A. Karabulut, “Investigation of epithermal and fast neutron shielding properties of Some High Entropy Alloys Containing Ti, Hf, Nb, and Zr”, Eastern Anatolian Journal of Science, vol. 8, no. 2, pp. 37–44, 2022.
ISNAD Aygün, Bünyamin - Karabulut, Abdulhalik. “Investigation of Epithermal and Fast Neutron Shielding Properties of Some High Entropy Alloys Containing Ti, Hf, Nb, and Zr”. Eastern Anatolian Journal of Science 8/2 (December 2022), 37-44.
JAMA Aygün B, Karabulut A. Investigation of epithermal and fast neutron shielding properties of Some High Entropy Alloys Containing Ti, Hf, Nb, and Zr. Eastern Anatolian Journal of Science. 2022;8:37–44.
MLA Aygün, Bünyamin and Abdulhalik Karabulut. “Investigation of Epithermal and Fast Neutron Shielding Properties of Some High Entropy Alloys Containing Ti, Hf, Nb, and Zr”. Eastern Anatolian Journal of Science, vol. 8, no. 2, 2022, pp. 37-44.
Vancouver Aygün B, Karabulut A. Investigation of epithermal and fast neutron shielding properties of Some High Entropy Alloys Containing Ti, Hf, Nb, and Zr. Eastern Anatolian Journal of Science. 2022;8(2):37-44.