Research Article
BibTex RIS Cite
Year 2024, Volume: 10 Issue: 1, 14 - 20, 30.06.2024

Abstract

References

  • ABEDI, H. and SALTI, M. (2015). Multiple field modified gravity and localized energy in teleparallel framework. General Relativity and Gravitation, 47: 1-14.
  • ALLEMANDI, G., et al. (2005). Dark energy dominance and cosmic acceleration in first-order formalism. Physical Review D, 72.6: 063505.
  • ASKIN, M., et al. (2015). Thermodynamics in f (T, θ) gravity. Rom. J. Phys, 60.1-2: 44-55.
  • ASTIER, P. et al. (2006). The Supernova Legacy Survey: measurement of, and w from the first year data set. Astronomy & Astrophysics, 447.1: 31-48.
  • BARROW, J. D. and OTTEWILL, A. C. (1983). The stability of general relativistic cosmological theory. Journal of Physics A: Mathematical and General, 16.12: 2757.
  • BERTOLAMI, O. et al. (2007). Extra force in f (R) modified theories of gravity. Physical Review D, 75.10: 104016. BOROWIEC, A., et al. (2007). Dark matter and dark energy as effects of modified gravity. International Journal of Geometric Methods in Modern Physics, 4.01: 183-196.
  • BREVIK, I. and QUIROGA, J. (2007). Vanishing cosmological constant in modified Gauss–Bonnet gravity with conformal anomaly. International Journal of Modern Physics D, 16.05: 817-825.
  • BRIDLE, S. L., et al. (2003). Precision cosmology? Not just yet. Science, 299.5612: 1532-1533.
  • BÖHMER, C. G. and TAMANINI, N. (2013). A new approach to modifying theories of gravity. Foundations of Physics, 43: 1478-1488.
  • BÖHMER, C. G., et al. (2014). On galaxy rotation curves from a new approach to modified gravity. arXiv preprint arXiv:1403.4110.
  • CAPOZZIELLO, S. and DE LAURENTIS, M. (2011). Extended theories of gravity. Physics Reports, 509.4-5: 167-321.
  • CAPOZZIELLO, S. et al. (2003). Curvature quintessence matched with observational data. International Journal of Modern Physics D, 12.10: 1969-1982.
  • CORDA, C. (2009). Interferometric detection of gravitational waves: the definitive test for General Relativity. International Journal of Modern Physics D, 18.14: 2275-2282.
  • DALY, R. A. and DJORGOVSKI, S. G. (2003). A model-independent determination of the expansion and acceleration rates of the universe as a function of redshift and constraints on dark energy. The Astrophysical Journal, 597.1: 9.
  • DE FELICE, A. and TSUJIKAWA, S. (2010). f (R) theories. Living Reviews in Relativity, 13.1: 1-161.
  • DEKEL, A., et al. (1997). Measuring omega. Critical Dialogues in Cosmology: Princeton, New Jersey, USA, 24-27 June 1996, in Celebration of the 250th Anniversary of Princeton University, 175.
  • DEMIR, D. A. and PAK, N. K. (2009). General tensor Lagrangians from the gravitational Higgs mechanism. Classical and Quantum Gravity, 26.10: 105018.
  • DOBADO, A. and MAROTO, A. L. (1995). Inflatonless inflation. Physical Review D, 52.4: 1895.
  • DVALI, G., et al. (2000). 4D gravity on a brane in 5D Minkowski space. Physics Letters B, 485.1-3: 208-214.
  • EFSTATHIOU, G., et al. (1999). Constraints on ΩΛ and Ωm from distant Type Ia supernovae and cosmic microwave background anisotropies. Monthly Notices of the Royal Astronomical Society, 303.3: L47-L52.
  • FREESE, K. and LEWIS, M. (2002). Cardassian expansion: a model in which the universe is flat, matter dominated, and accelerating. Physics Letters B, 540.1-2: 1-8.
  • FRIEDMANN, A. (1922). Über die krümmung des raumes. Zeitschrift für Physik, 10.1: 377-386.
  • FRIEDMANN, A. (1924). Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Zeitschrift für Physik, 21.1: 326-332.
  • HAGHANI, Z., et al. (2013). Further matters in space-time geometry: f (R, T, R μ ν T μ ν) gravity. Physical Review D, 88.4: 044023.
  • HARKO, T. and LOBO, F. SN. (2014). Generalized curvature-matter couplings in modified gravity. Galaxies, 2.3: 410-465.
  • HARKO, T., et al. (2011). Palatini formulation of modified gravity with a non-minimal curvature-matter coupling. Modern Physics Letters A, 26.20: 1467-1480.
  • HARKO, T., et al. (2011). f (R, T) gravity. Physical Review D, 84.2: 024020.
  • JAIN, B. and TAYLOR, A. (2003). Cross-correlation tomography: measuring dark energy evolution with weak lensing. Physical Review Letters, 91.14: 141302.
  • LOBO, F. SN. (2008). The dark side of gravity: Modified theories of gravity. arXiv preprint arXiv:0807.1640.
  • LAHANAS, A. B., et al. (2003). WMAPing the universe: Supersymmetry, dark matter, dark energy, proton decay and collider physics. International Journal of Modern Physics D, 12.09: 1529-1591.
  • LI, B. and BARROW, J. D. (2007). Cosmology of f (R) gravity in the metric variational approach. Physical Review D, 75.8: 084010.
  • MENG, X. H. and WANG, P. (2003). Modified Friedmann equations in R− 1-modified gravity. Classical and Quantum Gravity, 20.22: 4949.
  • NETTERFIELD, C. B., et al. (2002). A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background. The Astrophysical Journal, 571.2: 604.
  • NOJIRI, S. and ODINTSOV, S. D. (2004). Modified gravity with ln R terms and cosmic acceleration. General Relativity and Gravitation, 36: 1765-1780.
  • NOJIRI, S. and ODINTSOV, S. D. (2011). Unified cosmic history in modified gravity: from F (R) theory to Lorentz non-invariant models. Physics Reports, 505.2-4: 59-144.
  • NOJIRI, S. (2004). Dark energy and modified gravities. Вестник Томского государственного педагогического университета, 7: 49-57.
  • NOJIRI, S. and ODINTSOV, S. D. (2007). Introduction to modified gravity and gravitational alternative for dark energy. International Journal of Geometric Methods in Modern Physics, 4.01: 115-145.
  • ODINTSOV, S. D. and SÁEZ-GÓMEZ, D. (2013). f (R, T, RμνTμν) gravity phenomenology and ΛCDM universe. Physics Letters B, 725.4-5: 437-444.
  • PADMANABHAN, T. (2003). Cosmological constant—the weight of the vacuum. Physics Reports, 380.5-6: 235-320.
  • PAGE, L., et al. (2003). First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results.
  • PARKER, L., et al. (2003). Cosmological acceleration through transition to constant scalar curvature. The Astrophysical Journal, 588.2: 663.
  • PERLMUTTER, S. et al. (1998). Discovery of a supernova explosion at half the age of the Universe. Nature, 391.6662: 51-54.
  • PERLMUTTER, S., et al. (1997). Measurements* of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z≥ 0.35. The astrophysical journal, 483.2: 565.
  • PERLMUTTER, S., et al. (1999). Supernova cosmology project collaboration. Astrophys. J, 517.2: 565. PIRINÇÇIOĞLU, N. and SERT, I. (2012). Differences between scalar field and scalar density field solutions. Canadian Journal of Physics, 90.1: 91-95.
  • PIRINÇÇIOĞLU, N. (2012). Gravitational Higgs mechanism: the role of determinantal invariants. General Relativity and Gravitation, 44: 2563-2570.
  • PIRINÇÇIOG̃LU, N. (2019). Determinantal invariant gravity. Modern Physics Letters A, 34.15: 1950117. RIESS, A. G., et al. (2005). Cepheid calibrations from the hubble space telescope of the luminosity of two recent type Ia supernovae and a redetermination of the hubble constant. The Astrophysical Journal, 627.2: 579.
  • RIESS, A. G., et al. (1998). Observational evidence from supernovae for an accelerating universe and a cosmological constant. The astronomical journal, 116.3: 1009.
  • SALTI, M., et al. (2018). f (T, R) theory of gravity. International Journal of Modern Physics D, 27.05: 1850062.
  • SALTI, M., et al. (2016). Extended scalar–tensor theory and thermodynamics in teleparallel framework. Modern Physics Letters A, 31.33: 1650185.
  • SELJAK, U. et al. (2005). Cosmological parameter analysis including SDSS Ly α forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy. Physical Review D, 71.10: 103515.
  • SCHMIDT, B. P., et al. (1998). The high-Z supernova search: measuring cosmic deceleration and global curvature of the universe using type Ia supernovae. The Astrophysical Journal, 507.1: 46.
  • SOTIRIOU, T. P. (2006). f (R) gravity and scalar–tensor theory. Classical and Quantum Gravity, 23.17: 5117.
  • SOTIRIOU, T. P. and FARAONI, V. (2010). f (R) theories of gravity. Reviews of Modern Physics, 82.1: 451.
  • SPERGEL, D. N., at al. (2003). First-year Wilkinson Microwave Anisotropy Probe (WMAP)* observations: determination of cosmological parameters. The Astrophysical Journal Supplement Series, 148.1: 175.
  • STAROBINSKY, A. A. (1980). A new type of isotropic cosmological models without singularity. Physics Letters B, 91.1: 99-102.
  • TONRY, J. L., et al. (2003). Cosmological results from high-z supernovae. The Astrophysical Journal, 594.1: 1.
  • VERDE, L., et al. (2003). First-year Wilkinson microwave anisotropy probe (wmap)* observations: parameter estimation methodology. The Astrophysical Journal Supplement Series, 148.1: 195.
  • VIANA, P. TP and LIDDLE, A. R. (1999). Galaxy clusters at 0.3< z< 0.4 and the value of Ω0. Monthly Notices of the Royal Astronomical Society, 303.3: 535-545.
  • VISHWAKARMA, R. G. (2001). Study of the magnitude-redshift relation for type Ia supernovae in a model resulting from a Ricci-symmetry. General Relativity and Gravitation, 33: 1973-1984.
  • VISHWAKARMA, R. G. (2002). Consequences for some dark energy candidates from the type Ia supernova SN 1997ff. Monthly Notices of the Royal Astronomical Society, 331.3: 776-784.
  • WEINBERG, S. (1972). Gravitation and cosmology: principles and applications of the general theory of relativity.

Search on a modified gravity theory including scalar density field

Year 2024, Volume: 10 Issue: 1, 14 - 20, 30.06.2024

Abstract

In this study, we investigated modified gravity in terms of both scalar and scalar density fields. Subsequently, the results are compared and briefly discussed within the framework of the Friedmann-Robertson-Walker (FRW) metric. We present here focus our attention on investigating a new modified gravitational theory by making use of a weight 2 scalar density field, which may be important to describe a late universe. On this purpose, we derive corresponding equation-of-motion (EoM) for the selected scalar density form in order to reveal cosmological features of our theoretical ground. Consequently we arrived at the new and interesting field equations derived from modified equations of action corresponding to an FRW metric.

References

  • ABEDI, H. and SALTI, M. (2015). Multiple field modified gravity and localized energy in teleparallel framework. General Relativity and Gravitation, 47: 1-14.
  • ALLEMANDI, G., et al. (2005). Dark energy dominance and cosmic acceleration in first-order formalism. Physical Review D, 72.6: 063505.
  • ASKIN, M., et al. (2015). Thermodynamics in f (T, θ) gravity. Rom. J. Phys, 60.1-2: 44-55.
  • ASTIER, P. et al. (2006). The Supernova Legacy Survey: measurement of, and w from the first year data set. Astronomy & Astrophysics, 447.1: 31-48.
  • BARROW, J. D. and OTTEWILL, A. C. (1983). The stability of general relativistic cosmological theory. Journal of Physics A: Mathematical and General, 16.12: 2757.
  • BERTOLAMI, O. et al. (2007). Extra force in f (R) modified theories of gravity. Physical Review D, 75.10: 104016. BOROWIEC, A., et al. (2007). Dark matter and dark energy as effects of modified gravity. International Journal of Geometric Methods in Modern Physics, 4.01: 183-196.
  • BREVIK, I. and QUIROGA, J. (2007). Vanishing cosmological constant in modified Gauss–Bonnet gravity with conformal anomaly. International Journal of Modern Physics D, 16.05: 817-825.
  • BRIDLE, S. L., et al. (2003). Precision cosmology? Not just yet. Science, 299.5612: 1532-1533.
  • BÖHMER, C. G. and TAMANINI, N. (2013). A new approach to modifying theories of gravity. Foundations of Physics, 43: 1478-1488.
  • BÖHMER, C. G., et al. (2014). On galaxy rotation curves from a new approach to modified gravity. arXiv preprint arXiv:1403.4110.
  • CAPOZZIELLO, S. and DE LAURENTIS, M. (2011). Extended theories of gravity. Physics Reports, 509.4-5: 167-321.
  • CAPOZZIELLO, S. et al. (2003). Curvature quintessence matched with observational data. International Journal of Modern Physics D, 12.10: 1969-1982.
  • CORDA, C. (2009). Interferometric detection of gravitational waves: the definitive test for General Relativity. International Journal of Modern Physics D, 18.14: 2275-2282.
  • DALY, R. A. and DJORGOVSKI, S. G. (2003). A model-independent determination of the expansion and acceleration rates of the universe as a function of redshift and constraints on dark energy. The Astrophysical Journal, 597.1: 9.
  • DE FELICE, A. and TSUJIKAWA, S. (2010). f (R) theories. Living Reviews in Relativity, 13.1: 1-161.
  • DEKEL, A., et al. (1997). Measuring omega. Critical Dialogues in Cosmology: Princeton, New Jersey, USA, 24-27 June 1996, in Celebration of the 250th Anniversary of Princeton University, 175.
  • DEMIR, D. A. and PAK, N. K. (2009). General tensor Lagrangians from the gravitational Higgs mechanism. Classical and Quantum Gravity, 26.10: 105018.
  • DOBADO, A. and MAROTO, A. L. (1995). Inflatonless inflation. Physical Review D, 52.4: 1895.
  • DVALI, G., et al. (2000). 4D gravity on a brane in 5D Minkowski space. Physics Letters B, 485.1-3: 208-214.
  • EFSTATHIOU, G., et al. (1999). Constraints on ΩΛ and Ωm from distant Type Ia supernovae and cosmic microwave background anisotropies. Monthly Notices of the Royal Astronomical Society, 303.3: L47-L52.
  • FREESE, K. and LEWIS, M. (2002). Cardassian expansion: a model in which the universe is flat, matter dominated, and accelerating. Physics Letters B, 540.1-2: 1-8.
  • FRIEDMANN, A. (1922). Über die krümmung des raumes. Zeitschrift für Physik, 10.1: 377-386.
  • FRIEDMANN, A. (1924). Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Zeitschrift für Physik, 21.1: 326-332.
  • HAGHANI, Z., et al. (2013). Further matters in space-time geometry: f (R, T, R μ ν T μ ν) gravity. Physical Review D, 88.4: 044023.
  • HARKO, T. and LOBO, F. SN. (2014). Generalized curvature-matter couplings in modified gravity. Galaxies, 2.3: 410-465.
  • HARKO, T., et al. (2011). Palatini formulation of modified gravity with a non-minimal curvature-matter coupling. Modern Physics Letters A, 26.20: 1467-1480.
  • HARKO, T., et al. (2011). f (R, T) gravity. Physical Review D, 84.2: 024020.
  • JAIN, B. and TAYLOR, A. (2003). Cross-correlation tomography: measuring dark energy evolution with weak lensing. Physical Review Letters, 91.14: 141302.
  • LOBO, F. SN. (2008). The dark side of gravity: Modified theories of gravity. arXiv preprint arXiv:0807.1640.
  • LAHANAS, A. B., et al. (2003). WMAPing the universe: Supersymmetry, dark matter, dark energy, proton decay and collider physics. International Journal of Modern Physics D, 12.09: 1529-1591.
  • LI, B. and BARROW, J. D. (2007). Cosmology of f (R) gravity in the metric variational approach. Physical Review D, 75.8: 084010.
  • MENG, X. H. and WANG, P. (2003). Modified Friedmann equations in R− 1-modified gravity. Classical and Quantum Gravity, 20.22: 4949.
  • NETTERFIELD, C. B., et al. (2002). A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background. The Astrophysical Journal, 571.2: 604.
  • NOJIRI, S. and ODINTSOV, S. D. (2004). Modified gravity with ln R terms and cosmic acceleration. General Relativity and Gravitation, 36: 1765-1780.
  • NOJIRI, S. and ODINTSOV, S. D. (2011). Unified cosmic history in modified gravity: from F (R) theory to Lorentz non-invariant models. Physics Reports, 505.2-4: 59-144.
  • NOJIRI, S. (2004). Dark energy and modified gravities. Вестник Томского государственного педагогического университета, 7: 49-57.
  • NOJIRI, S. and ODINTSOV, S. D. (2007). Introduction to modified gravity and gravitational alternative for dark energy. International Journal of Geometric Methods in Modern Physics, 4.01: 115-145.
  • ODINTSOV, S. D. and SÁEZ-GÓMEZ, D. (2013). f (R, T, RμνTμν) gravity phenomenology and ΛCDM universe. Physics Letters B, 725.4-5: 437-444.
  • PADMANABHAN, T. (2003). Cosmological constant—the weight of the vacuum. Physics Reports, 380.5-6: 235-320.
  • PAGE, L., et al. (2003). First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results.
  • PARKER, L., et al. (2003). Cosmological acceleration through transition to constant scalar curvature. The Astrophysical Journal, 588.2: 663.
  • PERLMUTTER, S. et al. (1998). Discovery of a supernova explosion at half the age of the Universe. Nature, 391.6662: 51-54.
  • PERLMUTTER, S., et al. (1997). Measurements* of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z≥ 0.35. The astrophysical journal, 483.2: 565.
  • PERLMUTTER, S., et al. (1999). Supernova cosmology project collaboration. Astrophys. J, 517.2: 565. PIRINÇÇIOĞLU, N. and SERT, I. (2012). Differences between scalar field and scalar density field solutions. Canadian Journal of Physics, 90.1: 91-95.
  • PIRINÇÇIOĞLU, N. (2012). Gravitational Higgs mechanism: the role of determinantal invariants. General Relativity and Gravitation, 44: 2563-2570.
  • PIRINÇÇIOG̃LU, N. (2019). Determinantal invariant gravity. Modern Physics Letters A, 34.15: 1950117. RIESS, A. G., et al. (2005). Cepheid calibrations from the hubble space telescope of the luminosity of two recent type Ia supernovae and a redetermination of the hubble constant. The Astrophysical Journal, 627.2: 579.
  • RIESS, A. G., et al. (1998). Observational evidence from supernovae for an accelerating universe and a cosmological constant. The astronomical journal, 116.3: 1009.
  • SALTI, M., et al. (2018). f (T, R) theory of gravity. International Journal of Modern Physics D, 27.05: 1850062.
  • SALTI, M., et al. (2016). Extended scalar–tensor theory and thermodynamics in teleparallel framework. Modern Physics Letters A, 31.33: 1650185.
  • SELJAK, U. et al. (2005). Cosmological parameter analysis including SDSS Ly α forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy. Physical Review D, 71.10: 103515.
  • SCHMIDT, B. P., et al. (1998). The high-Z supernova search: measuring cosmic deceleration and global curvature of the universe using type Ia supernovae. The Astrophysical Journal, 507.1: 46.
  • SOTIRIOU, T. P. (2006). f (R) gravity and scalar–tensor theory. Classical and Quantum Gravity, 23.17: 5117.
  • SOTIRIOU, T. P. and FARAONI, V. (2010). f (R) theories of gravity. Reviews of Modern Physics, 82.1: 451.
  • SPERGEL, D. N., at al. (2003). First-year Wilkinson Microwave Anisotropy Probe (WMAP)* observations: determination of cosmological parameters. The Astrophysical Journal Supplement Series, 148.1: 175.
  • STAROBINSKY, A. A. (1980). A new type of isotropic cosmological models without singularity. Physics Letters B, 91.1: 99-102.
  • TONRY, J. L., et al. (2003). Cosmological results from high-z supernovae. The Astrophysical Journal, 594.1: 1.
  • VERDE, L., et al. (2003). First-year Wilkinson microwave anisotropy probe (wmap)* observations: parameter estimation methodology. The Astrophysical Journal Supplement Series, 148.1: 195.
  • VIANA, P. TP and LIDDLE, A. R. (1999). Galaxy clusters at 0.3< z< 0.4 and the value of Ω0. Monthly Notices of the Royal Astronomical Society, 303.3: 535-545.
  • VISHWAKARMA, R. G. (2001). Study of the magnitude-redshift relation for type Ia supernovae in a model resulting from a Ricci-symmetry. General Relativity and Gravitation, 33: 1973-1984.
  • VISHWAKARMA, R. G. (2002). Consequences for some dark energy candidates from the type Ia supernova SN 1997ff. Monthly Notices of the Royal Astronomical Society, 331.3: 776-784.
  • WEINBERG, S. (1972). Gravitation and cosmology: principles and applications of the general theory of relativity.
There are 61 citations in total.

Details

Primary Language English
Subjects General Relativity and Gravitational Waves, Astronomical Sciences (Other)
Journal Section makaleler
Authors

M. Faruk Karabat 0000-0001-9670-7163

Nurettin Pirinççioğlu 0000-0002-5348-0349

Publication Date June 30, 2024
Submission Date February 9, 2024
Acceptance Date June 30, 2024
Published in Issue Year 2024 Volume: 10 Issue: 1

Cite

APA Karabat, M. F., & Pirinççioğlu, N. (2024). Search on a modified gravity theory including scalar density field. Eastern Anatolian Journal of Science, 10(1), 14-20.
AMA Karabat MF, Pirinççioğlu N. Search on a modified gravity theory including scalar density field. Eastern Anatolian Journal of Science. June 2024;10(1):14-20.
Chicago Karabat, M. Faruk, and Nurettin Pirinççioğlu. “Search on a Modified Gravity Theory Including Scalar Density Field”. Eastern Anatolian Journal of Science 10, no. 1 (June 2024): 14-20.
EndNote Karabat MF, Pirinççioğlu N (June 1, 2024) Search on a modified gravity theory including scalar density field. Eastern Anatolian Journal of Science 10 1 14–20.
IEEE M. F. Karabat and N. Pirinççioğlu, “Search on a modified gravity theory including scalar density field”, Eastern Anatolian Journal of Science, vol. 10, no. 1, pp. 14–20, 2024.
ISNAD Karabat, M. Faruk - Pirinççioğlu, Nurettin. “Search on a Modified Gravity Theory Including Scalar Density Field”. Eastern Anatolian Journal of Science 10/1 (June 2024), 14-20.
JAMA Karabat MF, Pirinççioğlu N. Search on a modified gravity theory including scalar density field. Eastern Anatolian Journal of Science. 2024;10:14–20.
MLA Karabat, M. Faruk and Nurettin Pirinççioğlu. “Search on a Modified Gravity Theory Including Scalar Density Field”. Eastern Anatolian Journal of Science, vol. 10, no. 1, 2024, pp. 14-20.
Vancouver Karabat MF, Pirinççioğlu N. Search on a modified gravity theory including scalar density field. Eastern Anatolian Journal of Science. 2024;10(1):14-20.