BibTex RIS Cite

Maddenin tanecikli yapısının mikro ve makro boyutta anlaşılmasının sağlanması

Year 2014, Volume: 4 Issue: 1, 349 - 368, 01.06.2014

Abstract

Bu araştırmada deneyler ve makro gösterim ile maddenin tanecikli yapısının anlaşılması sağlanmaya çalışılmıştır. Araştırmada tek denekli deneysel yöntem kullanılmıştır. Araştırmanın örneklemini Fen Bilgisi Öğretmenliği birinci sınıfında öğrenim gören 48 öğrenci oluşturmaktadır. Araştırmada veri toplama aracı olarak Maddenin Tanecikli Yapısı Testleri (MTYT) kullanılmıştır. Testler açık uçlu sorulardan oluşmaktadır. Uygulama sürecinde araştırmanın amacını gerçekleştirmek üzere iki deney yapılmıştır. Deneylerden önce MTYT uygulanmış ve öğrencilerin deneyle ilgili ön bilgileri alınmıştır. Ardından deneyler yapılmış ve deneylerden sonra MTYT tekrar uygulanmış ve öğrencilerin tanecikli yapıyla ilgili anlamaları belirlenmiştir. Ayrıca birinci deney için deneyin ardından öğrencilerin tanecikli yapıyı anlamaları amacıyla makro boyutta gösterim yapılmış ve bu gösterimden sonra tekrar MTYT uygulanmıştır. Araştırmadan elde edilen bulgular, öğrencilerin ilk durumda kavramsal yanlış anlamalarının uygulama sonunda azaldığını göstermektedir. Ancak bazı noktalarda öğrencilerin sahip oldukları yanlış anlamaları devam ettirdikleri görülmüştür

References

  • Abraham, M. R., Williamson, V. M. & Westbrook, S. L. (1994). A cross-age study of the understanding five concepts. Journal of Research in Science Teaching, 31 (2), 147-165.
  • Adadan, E. (2012). Using multiple representations to promote grade 11 students’ scientific understanding of the particle theory of matter. Research in Science Education, 43(3), 1079-1105.
  • Adadan, E., Trundle, K. C. & Irving, K. E. (2010). Exploring grade 11 students’ conceptual pathways of the particulate nature of matter in the context of multi representational ınstruction. Journal of Research in Science Teaching, 47 (8), 1004-1035.
  • Brook, A., Briggs, H. & Driver, R. (1984). Aspects of secondary students’ understanding of the particulate nature of matter. Leeds, UK: Children’s Learning in Science Project, Centre for Studies in Science and Mathematics Education, University of Leeds.
  • Çalık, M. & Ayas, A. (2002). Öğrencilerin bazı kimya kavramlarını anlama seviyelerinin karşılaştırılması. 2000’li Yıllarda I. Öğrenme ve Öğretme Sempozyumu, 29-31 Mayıs, Marmara Üniversitesi, İstanbul.
  • Çalık, M., Ayas, A. & Ünal, S. (2006). Çözünme kavramıyla ilgili öğrenci kavramalarının tespiti: Bir yaşlar arası karşılaştırma çalışması. Gazi Üniversitesi Türk Eğitim Bilimleri Dergisi, 4 (3), 309-322.
  • Demircioğlu, H., Demircioğlu, G. Ayas, A. & Kongur, S. (2012). Onuncu sınıf öğrencilerinin fiziksel ve kimyasal değişme kavramları ile ilgili teorik ve uygulama bilgilerinin karşılaştırılması. Türk Fen Eğitimi Dergisi, 9 (1), 162-181.
  • Ebenezer, J. (2001). A hypermedia environment to explore and negatiate students’ conceptions: Animation of the solution process of table salt. Journal of Science Education and Technology, 10, 73-91.
  • Eilks, I., Moellering, J. & Valanides, N. (2007). Seventh-grade students' understanding of chemical reactions: reflections from an action research interview study. Eurasia Journal of Mathematics, Science & Technology Education, 3 (4), 271-286.
  • Franco, A.G. & Taber, K.S. (2009). Secondary students’ thinking about familiar phenomena: Learners’ explanations from a curriculum context where ‘particles’ is a key idea for organizing teaching and learning. International Journal of Science Education, 31 (14), 1917-1952.
  • Gabel, D. L. & Bunce, D. M. (1994). Research on problem solving: Chemistry. Handbook of research on science teaching and learning (Edt: D. L. Gabel). New York: Macmillan. pp. 301-325.
  • Griffiths, A., & Preston, K. (1992). Grade-12 students’ misconceptions relating to fundamental characteristics of atoms and molecules. Journal of Research in Science Teaching, 29 (6), 611-628.
  • Gunstone, R. F. (1991). Reconstructing theory from practical experience. Practical science (Edt: B. E. Woolnough). Milton Keynes: Open University Press. pp. 67-77.
  • Haigh, M., France, B. & Gounder, R. (2011). Compounding confusion? When illustrative practical work falls short of its purpose-A case study. Research in Science Education, 42 (5), 967-984.
  • Kalın, B. & Arıkıl G. (2010). Çözeltiler konusunda üniversite öğrencilerinin sahip olduğu kavram yanılgıları. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 4 (2), 177-206.
  • Karaçöp, A. & Doymuş, K. (2012). Effects of jigsaw cooperative learning and animation techniques on students’ understanding of chemical bonding and their conceptions of the particulate nature of matter. Journal of Science Education Technology, 22, 186-203.
  • Kokkotas, P., Vlachos, I. & Kouladis, V. (1998). Teaching the topic of the particulate nature of matter in prospective teachers’ training courses. International Journal of Science Education, 20 (3), 291-303.
  • Lagowski, J. J. (1989). Reformating the laboratory. Journal of Chemical Education, 66 (1), 12-14.
  • Lazarowitz, R. & Tamir, P. (1994). Research on using laboratory instruction in science. Handbook of research on science teaching and learning (Edt: D. Gabel). New York: Macmillan. pp. 94-128.
  • Morgil, İ., Güngör S. H. & Seçken, N. (2009). Proje destekli kimya laboratuarı uygulamalarının bazı bilişsel ve duyuşsal alan bileşenlerine etkisi. Journal of Turkish Science Education, 6 (1), 90-107.
  • Novick, S. & Nussbaum, J. (1981). Pupils’ understanding of the particulate nature of matter: A cross age study. Science Education, 65 (2), 187-196.
  • Özmen, H. (2011). Turkish primary students' conceptions about the particulate nature of matter. International Journal of Environmental & Science Education, 6 (1), 99-121.
  • Özmen, H. & Ayas, A. (2003). Students' difficulties in understanding of the conservation of matter in open and closed-system chemical reactions. Chemistry Education Research and Practice, 4 (3), 279-290.
  • Papageorgiou, G., Stamovlasis, D. & Johnson, P.M (2010). Primary teachers’ particle ideas and explanations of physical phenomena: Effect of an in-service training course. International Journal of Science Education, 32 (5), 629-652.
  • Pekdağ, B. (2010). Kimya öğreniminde alternatif yollar: Animasyon, simülasyon, video ve multimedya ile öğrenme. Türk Fen Eğitimi Dergisi, 7 (2), 79-110.
  • Raviolo, A. (2001). Assessing students’ conceptual understanding of solubility equilibrium. Journal of Chemical Education, 78 (5), 629-631.
  • Reid, N. (2000). The presentation of chemistry logically driven or applications-led? Chemistry Education: Research and Practice in Europe, 1 (3), 381-392.
  • Sanger, M. J., Phelps, A. J. & Fienhold, J. (2000). Using a computer animation to improve students’ conceptual understanding of a can-crushing demonstration. Journal of Chemical Education, 77 (11), 1517-1520.
  • Stavridou, H. & Solomonidou, C. (1998). Conceptual reorganization and the construction of the chemical reaction concept during secondary education. International Journal of Science Education, 20 (2), 205-221.
  • Şen, Ş. & Yılmaz, A. (2012). Erime ve çözünmeyle ilgili kavram yanılgılarının ontoloji temelinde incelenmesi. Amasya Üniversitesi Eğitim Fakültesi Dergisi 1 (1), 54-72.
  • Uluçınar Sağır, Ş., Tekin, S. & Karamustafaoğlu, S. (2013). Sınıf öğretmeni adaylarının bazı kimya kavramlarını anlama düzeyleri. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 19, 112-135.
  • Ültay, N. & Çalık, M. (2012). A thematic review of studies into the effectiveness of context- based chemistry curricula. Journal of Science Education and Technology, 21 (6), 686-701.
  • Wheeldon, R., Atkinson, R., Dawes, A. & Levinson, R. (2012). Do high school chemistry examinations inhibit deeper level understanding of dynamic reversible chemical reactions? Research in Science & Technological Education, 30 (2), 107-130.

[Aiding comprehension of the particulate of matter at the micro and macro levels]

Year 2014, Volume: 4 Issue: 1, 349 - 368, 01.06.2014

Abstract

It is known that chemistry is a difficult domain for students to learn and for teachers
to teach (Haigh, France & Gounder, 2011; Adadan, 2012; Ültay & Çalık, 2012; Wheeldon,
Atkinson, Dawes & Levinson, 2012). The reason for this difficulty is that chemistry has too
many abstract concepts and requires high- level thinking skills (Reid, 2000; Çalık & Ayas,
2005; Papageorgiou, Stamovlasis & Johnson, 2010; Demircioğlu, Demircioğlu, Ayas &
Kongur, 2012).
In order to learn chemical concepts, one must grasp three levels of definition: the
microscopic, macroscopic and symbolic level (Novick & Nussbaum, 1981). The macroscopic
level is related to directly observable events, while the microscopic level is related to
particles such as atoms and molecules (Ebenezer, 2001; Özmen & Ayas, 2003). The symbolic
level is an explanation of other levels. An exact understanding of these levels facilitates
students’ comprehension of chemical concepts. According to the literature, students cannot
relate the micro level and the macro level and have difficulty understanding either level on
its own (Raviolo, 2001; Çalık & Ayas, 2002; Franco & Taber, 2009; Adadan, Trundle & Irving,
2010; Karaçöp & Doymuş, 2012). Generally, students tend to explain micro events at the
macro level (Stavridou & Solomonidou, 1998).
The particulate of matter is one problematic topic at micro level. This topic is a
fundamental topic of chemistry (Brook, Briggs & Driver, 1984; Griffiths & Preston, 1992;
Adadan, Trundle & Irving, 2010), meaning that a problem with this subject will affect further
learning.
If university students studying science education or chemical education, pre-service
teachers and even teachers themselves have some misconceptions related to chemical
concepts, it is clearly important that they master the topic of the particulate of matter at the
micro and macro level.
Experiments, an indispensable element of science, help people understand chemistry
from a theoretical and practical standpoint. Experiments involve associations between the
micro and macro levels and thus provide an understanding of difficult and abstract concepts.
Models can also furnish foster a better understanding of concepts related to the micro and
macro levels.
Studies have found that students cannot connect daily life and chemical concepts.
While they know chemical concepts theoretically, they cannot relate theory to events that
occur in daily life, and they tend to explain micro events at the macro level (Stavridou &
Solomonidou, 1998; Özmen, 2003; Demircioğlu, Demircioğlu, Ayas & Kongur, 2012). In
response to this difficulty, this study made use of experiments and models in order to
facilitate micro and macro level understandings among science students concerning the topic
of the particulate of matter.
In this study, we attempted to improve understanding of the particulate nature of
matter using experiments and demonstrations at the micro and macro levels.

References

  • Abraham, M. R., Williamson, V. M. & Westbrook, S. L. (1994). A cross-age study of the understanding five concepts. Journal of Research in Science Teaching, 31 (2), 147-165.
  • Adadan, E. (2012). Using multiple representations to promote grade 11 students’ scientific understanding of the particle theory of matter. Research in Science Education, 43(3), 1079-1105.
  • Adadan, E., Trundle, K. C. & Irving, K. E. (2010). Exploring grade 11 students’ conceptual pathways of the particulate nature of matter in the context of multi representational ınstruction. Journal of Research in Science Teaching, 47 (8), 1004-1035.
  • Brook, A., Briggs, H. & Driver, R. (1984). Aspects of secondary students’ understanding of the particulate nature of matter. Leeds, UK: Children’s Learning in Science Project, Centre for Studies in Science and Mathematics Education, University of Leeds.
  • Çalık, M. & Ayas, A. (2002). Öğrencilerin bazı kimya kavramlarını anlama seviyelerinin karşılaştırılması. 2000’li Yıllarda I. Öğrenme ve Öğretme Sempozyumu, 29-31 Mayıs, Marmara Üniversitesi, İstanbul.
  • Çalık, M., Ayas, A. & Ünal, S. (2006). Çözünme kavramıyla ilgili öğrenci kavramalarının tespiti: Bir yaşlar arası karşılaştırma çalışması. Gazi Üniversitesi Türk Eğitim Bilimleri Dergisi, 4 (3), 309-322.
  • Demircioğlu, H., Demircioğlu, G. Ayas, A. & Kongur, S. (2012). Onuncu sınıf öğrencilerinin fiziksel ve kimyasal değişme kavramları ile ilgili teorik ve uygulama bilgilerinin karşılaştırılması. Türk Fen Eğitimi Dergisi, 9 (1), 162-181.
  • Ebenezer, J. (2001). A hypermedia environment to explore and negatiate students’ conceptions: Animation of the solution process of table salt. Journal of Science Education and Technology, 10, 73-91.
  • Eilks, I., Moellering, J. & Valanides, N. (2007). Seventh-grade students' understanding of chemical reactions: reflections from an action research interview study. Eurasia Journal of Mathematics, Science & Technology Education, 3 (4), 271-286.
  • Franco, A.G. & Taber, K.S. (2009). Secondary students’ thinking about familiar phenomena: Learners’ explanations from a curriculum context where ‘particles’ is a key idea for organizing teaching and learning. International Journal of Science Education, 31 (14), 1917-1952.
  • Gabel, D. L. & Bunce, D. M. (1994). Research on problem solving: Chemistry. Handbook of research on science teaching and learning (Edt: D. L. Gabel). New York: Macmillan. pp. 301-325.
  • Griffiths, A., & Preston, K. (1992). Grade-12 students’ misconceptions relating to fundamental characteristics of atoms and molecules. Journal of Research in Science Teaching, 29 (6), 611-628.
  • Gunstone, R. F. (1991). Reconstructing theory from practical experience. Practical science (Edt: B. E. Woolnough). Milton Keynes: Open University Press. pp. 67-77.
  • Haigh, M., France, B. & Gounder, R. (2011). Compounding confusion? When illustrative practical work falls short of its purpose-A case study. Research in Science Education, 42 (5), 967-984.
  • Kalın, B. & Arıkıl G. (2010). Çözeltiler konusunda üniversite öğrencilerinin sahip olduğu kavram yanılgıları. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 4 (2), 177-206.
  • Karaçöp, A. & Doymuş, K. (2012). Effects of jigsaw cooperative learning and animation techniques on students’ understanding of chemical bonding and their conceptions of the particulate nature of matter. Journal of Science Education Technology, 22, 186-203.
  • Kokkotas, P., Vlachos, I. & Kouladis, V. (1998). Teaching the topic of the particulate nature of matter in prospective teachers’ training courses. International Journal of Science Education, 20 (3), 291-303.
  • Lagowski, J. J. (1989). Reformating the laboratory. Journal of Chemical Education, 66 (1), 12-14.
  • Lazarowitz, R. & Tamir, P. (1994). Research on using laboratory instruction in science. Handbook of research on science teaching and learning (Edt: D. Gabel). New York: Macmillan. pp. 94-128.
  • Morgil, İ., Güngör S. H. & Seçken, N. (2009). Proje destekli kimya laboratuarı uygulamalarının bazı bilişsel ve duyuşsal alan bileşenlerine etkisi. Journal of Turkish Science Education, 6 (1), 90-107.
  • Novick, S. & Nussbaum, J. (1981). Pupils’ understanding of the particulate nature of matter: A cross age study. Science Education, 65 (2), 187-196.
  • Özmen, H. (2011). Turkish primary students' conceptions about the particulate nature of matter. International Journal of Environmental & Science Education, 6 (1), 99-121.
  • Özmen, H. & Ayas, A. (2003). Students' difficulties in understanding of the conservation of matter in open and closed-system chemical reactions. Chemistry Education Research and Practice, 4 (3), 279-290.
  • Papageorgiou, G., Stamovlasis, D. & Johnson, P.M (2010). Primary teachers’ particle ideas and explanations of physical phenomena: Effect of an in-service training course. International Journal of Science Education, 32 (5), 629-652.
  • Pekdağ, B. (2010). Kimya öğreniminde alternatif yollar: Animasyon, simülasyon, video ve multimedya ile öğrenme. Türk Fen Eğitimi Dergisi, 7 (2), 79-110.
  • Raviolo, A. (2001). Assessing students’ conceptual understanding of solubility equilibrium. Journal of Chemical Education, 78 (5), 629-631.
  • Reid, N. (2000). The presentation of chemistry logically driven or applications-led? Chemistry Education: Research and Practice in Europe, 1 (3), 381-392.
  • Sanger, M. J., Phelps, A. J. & Fienhold, J. (2000). Using a computer animation to improve students’ conceptual understanding of a can-crushing demonstration. Journal of Chemical Education, 77 (11), 1517-1520.
  • Stavridou, H. & Solomonidou, C. (1998). Conceptual reorganization and the construction of the chemical reaction concept during secondary education. International Journal of Science Education, 20 (2), 205-221.
  • Şen, Ş. & Yılmaz, A. (2012). Erime ve çözünmeyle ilgili kavram yanılgılarının ontoloji temelinde incelenmesi. Amasya Üniversitesi Eğitim Fakültesi Dergisi 1 (1), 54-72.
  • Uluçınar Sağır, Ş., Tekin, S. & Karamustafaoğlu, S. (2013). Sınıf öğretmeni adaylarının bazı kimya kavramlarını anlama düzeyleri. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 19, 112-135.
  • Ültay, N. & Çalık, M. (2012). A thematic review of studies into the effectiveness of context- based chemistry curricula. Journal of Science Education and Technology, 21 (6), 686-701.
  • Wheeldon, R., Atkinson, R., Dawes, A. & Levinson, R. (2012). Do high school chemistry examinations inhibit deeper level understanding of dynamic reversible chemical reactions? Research in Science & Technological Education, 30 (2), 107-130.
There are 33 citations in total.

Details

Other ID JA65DA89ZC
Journal Section Research Article
Authors

Seda Okumuş This is me

Bilge Öztürk This is me

Kemal Doymuş This is me

Mustafa Alyar

Publication Date June 1, 2014
Published in Issue Year 2014 Volume: 4 Issue: 1

Cite

APA Okumuş, S., Öztürk, B., Doymuş, K., Alyar, M. (2014). Maddenin tanecikli yapısının mikro ve makro boyutta anlaşılmasının sağlanması. Eğitim Bilimleri Araştırmaları Dergisi, 4(1), 349-368.
AMA Okumuş S, Öztürk B, Doymuş K, Alyar M. Maddenin tanecikli yapısının mikro ve makro boyutta anlaşılmasının sağlanması. EBAD - JESR. June 2014;4(1):349-368.
Chicago Okumuş, Seda, Bilge Öztürk, Kemal Doymuş, and Mustafa Alyar. “Maddenin Tanecikli yapısının Mikro Ve Makro Boyutta anlaşılmasının sağlanması”. Eğitim Bilimleri Araştırmaları Dergisi 4, no. 1 (June 2014): 349-68.
EndNote Okumuş S, Öztürk B, Doymuş K, Alyar M (June 1, 2014) Maddenin tanecikli yapısının mikro ve makro boyutta anlaşılmasının sağlanması. Eğitim Bilimleri Araştırmaları Dergisi 4 1 349–368.
IEEE S. Okumuş, B. Öztürk, K. Doymuş, and M. Alyar, “Maddenin tanecikli yapısının mikro ve makro boyutta anlaşılmasının sağlanması”, EBAD - JESR, vol. 4, no. 1, pp. 349–368, 2014.
ISNAD Okumuş, Seda et al. “Maddenin Tanecikli yapısının Mikro Ve Makro Boyutta anlaşılmasının sağlanması”. Eğitim Bilimleri Araştırmaları Dergisi 4/1 (June 2014), 349-368.
JAMA Okumuş S, Öztürk B, Doymuş K, Alyar M. Maddenin tanecikli yapısının mikro ve makro boyutta anlaşılmasının sağlanması. EBAD - JESR. 2014;4:349–368.
MLA Okumuş, Seda et al. “Maddenin Tanecikli yapısının Mikro Ve Makro Boyutta anlaşılmasının sağlanması”. Eğitim Bilimleri Araştırmaları Dergisi, vol. 4, no. 1, 2014, pp. 349-68.
Vancouver Okumuş S, Öztürk B, Doymuş K, Alyar M. Maddenin tanecikli yapısının mikro ve makro boyutta anlaşılmasının sağlanması. EBAD - JESR. 2014;4(1):349-68.