Research Article
BibTex RIS Cite

Land cover change analysis between 1990 and 2021 using Landsat images and object-based classification: A case study in Bodrum peninsula, Aegean Region, Turkey

Year 2022, , 101 - 119, 29.06.2022
https://doi.org/10.51800/ecd.1087278

Abstract

Bodrum Peninsula is one of the most important tourism centers of Turkey with its geographical location, coastal and marine tourism, natural and cultural features. It has been determined that the winter population has also increased in Bodrum in recent years, and it is thought that this may cause an increasing permanent resident population and urbanization. The objective of this study is to determine the changes in land cover due to the rapid increase in urbanization in Bodrum Peninsula. For this purpose, object-based classification analysis was applied to Landsat 4-5 TM 1990, 2000, 2010 and Landsat 8 OLI 2021 multispectral satellite images. Within the scope of the analysis, the objects were created by applying the segmentation process to satellite images. Secondly, land cover classes were determined according to the Corine land cover classification with levels 1-2-3. Thirdly, the classification process based on a decision tree was carried out with the classes defined using the threshold values determined for spectral and texture properties of the objects using multiresolution segmentation. In the last stage, accuracy assessment analysis was applied to the classification results. According to the results, it is obtained that while Urban Fabric and Burnt Areas are increased in 32 years, Forest and semi-natural areas are decreased. As a result of population pressure due to tourism, Urban Fabric areas have moved closer to Forests and Semi-Natural Areas. Wildfires with the effect of heatwaves were increased, biodiversity has been endangered in the study area located in the Mediterranean basin, where human-related climate change is most clearly detected. Significantly, there has been a wildfire in Bodrum in August 2021, which lasted for days and caused severe degradation on the land cover. For this, sustainable land cover management is recommended to protect the natural ecosystem by minimizing the risks that cause land degradation in the Bodrum peninsula.

References

  • Referans1 Aahlaad M, Mozumder, C, Tripathi N et al (2021) An Object-Based Image Analysis of WorldView-3 Image for Urban Flood Vulnerability Assessment and Dissemination Through ESRI Story Maps. J Indian Soc Remote Sens. https://doi.org/10.1007/s12524-021-01416-4
  • Referans2 Alevkayalı Ç, Tağıl Ş (2018) Ortak Malların Trajedisi Üzerine Teoriler: Gediz Deltası’nda Arazi Kullanımı-Arazi Örtüsü Değişimi. Süleyman Demirel Üniversitesi Fen-Edebiyat Fakültesi Sosyal Bilimler Dergisi, 43, 120-142
  • Referans3 Algancı U (2018) Arazi Örtüsü Değişimlerinin Çok Zamanlı Landsat 8 Uydu Görüntüleri ile Belirlenmesi: İstanbul Örneği. Harita Dergisi, 160, 24-33
  • Referans4 Algancı U, Besol B, Sertel, E (2018) Accuracy Assessment of Different Digital Surface Models. ISPRS International Journal of Geo-Information, 7(114)
  • Referans5 Anderson James R, Ernest E Hardy, John T Roach, and Richard E. Witmer (1976) A Land Use and Land Cover Classification System For Use With Remote Sensor Data. USGS Professional Paper 964. A revision of the land use classification system as presented in the USGS Circular 671, https://pubs.usgs.gov/pp/0964/report.pdf
  • Referans6 Avashia V, Parihar S, Garg A (2020) Evaluation of Classification Techniques for Land Use Change Mapping of Indian Cities. J Indian Soc Remote Sens 48, 877–908. https://doi.org/10.1007/s12524-020-01122-7
  • Referans7 Atalay İ, Sezer İL, Çukur H (1998) The Ecologic Proporties of Red Pine (Pinus brutia Ten.) Forests and Their Regioning in terms of Seed Transfer. Ege Üniversitesi Basımevi, İzmir.
  • Referans8 Atalay İ (2005) Türkiye Vejetasyon Coğrafyası. Meta Basım Matbaacılık, İzmir.
  • Referans9 Baatz M, Schape A (2000) Multi resolution segmentation: an optimization approach for high quality multi scale image segmentation. Proceedings of Twelfth Angewandte Geographische Informations verarbeitung Wichmann-Verlag, Heidelberg, ss.12−23
  • Referans10 Bakış R, Arı G (2010) Bodrum Yarımadasının İçme-Kullanma Suyu Problemi ve Çözüm Önerileri. Tarım Bilimleri Araştırma Dergisi, 3(2), 71-80, 2010 ISSN: 1308-3945, E-ISSN: 1308-027X
  • Referans11 Baylan K, Ustaoğlu B (2020) Emberger Biyoiklim Sınıflandırmasına Göre Türkiye’de Akdeniz Biyoiklim Katlarının ve Alt Tiplerinin Dağılısı. Ulusal Çevre Bilimleri Araştırma Dergisi, 3(3), 158-174.
  • Referans12 Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M (2004) Multi-resolution object-based fuzzy analysis of remote sensing data for GIS- ready information. ISPRS Journal of Photogramemetry and Remote Sensing, 58(3-4), 239-258
  • Referans13 Bhatta B (2010) Analysis of Urban Growth and Sprawl from Remote Sensing Data. Springer-Verlag Berlin Heidelberg. DOI 10.1007/978-3-642-05299-6
  • Referans14 Blaschke T (2010) Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2-16
  • Referans15 Chamber of Shipping. (2020) https://www.denizticaretodasi.org.tr/tr/sayfalar/turkiyedeki-marinalar
  • Referans16 Cürebal İ., Efe R. Soykan A., 2019 "Spatial and Temporal Change of Bursa City Settlement Area (1955-2018) and Environmental Impacts of Expansion", Theory and Practice in Social Sciences, ed. Viliyan Krystev, Recep Efe, & Emin Atasoy, Sofia: St. Kliment Ohridski University Press, 2019, ss. 213-226
  • Referans17 Cohen, J (1960) A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46 Referans18 Doğaner S (2001) Türkiye Turizm Coğrafyası. Çantay Kitabevi. İstanbul, Türkiye
  • Referans19 Dutucu AA, İkiel C (2016) Çarşamba Ovası ve yakın çevresinde arazi örtüsü değişiminin uzaktan algılama ve coğrafi bilgi sistemleriyle analizi (1985-2013). International Journal of Human Sciences, 13(3), 5551-5560
  • Referans20 Efe R, Soykan A, Cürebal İ, Sönmez S (2012) Land use and land cover detection in Karinca river catchment (NW Turkey) using GIS and RS techniques. Journal of Environmental Biology, 33(2 suppl), 439-447
  • Referans21 Esetlili TM, Bektaş Balçık F, Balık Şanlı F, Üstüner M, Kalkan K, Gökse Ç, ... Gazioğl C (2018) Comparison of Object and Pixel-Based Classifications for Mapping Crops Using Rapideye Imagery: A Case Study of Menemen Plain,Turkey. International Journal of Environment and Geoinformatics , vol.5, no.2, 231-243.
  • Referans22 European Environment Agency, (2021) Corine Land Cover Classification Classes, https://land.copernicus.eu/pan-european/corine-land-cover
  • Referans23 Foody G M (2002) Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80,185–201
  • Referans24 Foody G M (2020) Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification, Remote Sensing of Environment, Volume 239, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2019.111630.
  • Referans25 Gupta N, Bhadauria HS (2014) Object based information extraction form high resolution satellite imagery using eCognition. International Journal of Computer Science Issues, Vol. 11, Issue 3, No. 2, pp. 139-144
  • Referans26 Hofmann P (2001) Detecting Urban Features From IKONOS Data Using an Object-based Approach. First Annual Conference of the Remote Sensing & Photogrammetry Society (pp. 28-33), 12-14 September
  • Referans27 PCC (2021) AR6 Climate Change 2021: The Physical Science Basis, https://www.ipcc.ch/report/ar6/wg1/#Regional
  • Referans28 İkiel C (2004) Muğla ilinin coğrafi özellikleri. A. A Çınar içinde, Muğla Kitabı (s.15-25). Muğla-İzmir
  • Referans29 İkiel C (2005) Muğla yöresinde iklim koşullarının insan ve çevre üzerine etkileri. Ulusal Coğrafya Kongresi (İsmail Yalçınlar anısına) (s. 233-241) 28-30 Eylül, İstanbul, Türkiye
  • Referans30 İkiel C, Ustaoğlu B, Kılıç DE, Dutucu AA (2013) Remote sensing and GIS based integrated analysis of land cover change in Duzce plain and its surroundings north western Turkey. Environmental Monitoring and Assessment, 185 (2), 1699-1709
  • Referans31 İkiel C, Ustaoğlu B, Dutucu AA, Kılıç DE (2019) Determination Of Land Cover Change in Datça and Bozburun Peninsula İn Turkey (1997-2018). 2019 8th International Conference On Agro-Geoinformatics (Agro-Geoinformatics), Doi:10.1109/Agro-Geoinformatics
  • Referans32 Kalkan K, Maktav D (2010) Nesne Tabanlı ve Piksel Tabanlı Sınıflandırma Yöntemlerinin Karşılaştırılması (IKONOS Örneği). III. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Sempozyumu (s.153-160), 11-13 Ekim, Gebze-Kocaeli, Türkiye
  • Referans33 Kavak, KŞ (2018) Uzaktan Algılama ve Görüntü Yorumlama. Ankara, Türkiye: Palme Yayınevi
  • Referans34 Kavzoglu, T, Yıldız M (2014) Parameter-Based performance analysis of object-based image analysis using aerial and QuickBird-2 images. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 11(7), 31-37
  • Referans35 Kavzoglu T, Yıldız M (2015) Segmentasyonda Optimum Ölçek Parametresi Tespitinde Konumsal Otokorelasyon ve Varyansın Etkisinin Analizi. Türkiye Ulusal Fotogrametri ve Uzaktan Algılama Birliği (TUFUAB) VIII. Teknik Sempozyumu, 21-23 Mayıs, Selçuk Üniversitesi – Konya
  • Referans36 Koç DE, Biltekin D, Ustaoğlu B (2021) Modelling potential distribution of Carpinus betulus in Anatolia and its surroundings from the Last Glacial Maximum to the future. Arab J Geosci 14, 1186. https://doi.org/10.1007/s12517-021-07444-1
  • Referans37 Kodal T (2008) Atatürk Döneminde Bodrum’un Nüfus Yapısı (1923-1938). SDÜ Fen Edebiyat Fakültesi Sosyal Bilimler Dergisi, 17, 77-100
  • Referans38 Lambin EF, Turner BL, Geist H, Agbola S, Angelsen A, Bruce J, Coomes O, Dirzo R, Fischer G, Folke C, George PS, Homewood K, Imbernon J, Lemmans R, Li X, Moran E, Mortimore M, Ramakrishnan PS, Richards JF, Dkanes H, Steffen W, Stone GD, Svedin U, Veldkamp T, Vogel C, Xu J (2001) The causes of land-use and land-cover change: moving beyond the myths. Global Environmental Change, 11, 261– 269
  • Referans39 Li C, Shao G (2012) Object-based classification of land use / cover using digital aerial orthophotography. International Journal of Remote Sensing, 33(4), 922-938
  • Referans40 Lillesand TM, Kiefer RW, Chipman, JW (2007) Remote Sensing and Image Interpretation. Sixth edition, New York, USA: John Wiley & Sons
  • Referans41 Mishra, PK, Rai A, Rai SC (2020) Land Use and Land Cover Change Detection using Geospatial Techniques in Sikkim Himalaya, India. Egyptian Journal of Remote Sensing and Space Sciences. 23 (2):133-143. doi.org/10.1016/j.ejrs.2019.02.001
  • Referans42 Mishra, PK, Rai, A (2021) Role of Unmanned Aerial Systems for Natural Resource Management. J Indian Soc Remote Sens 49, 671–679 https://doi.org/10.1007/s12524-020-01230-4
  • Referans43 Mitri GH, Gitas IZ (2006) Fire type mapping using object-based classification of Ikonos imagery. Int J Wildland Fire. 15:457462.
  • Referans44 Myint SW, Gober P, Brazel A, Grossman-Clarke S, Weng QH (2011) Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sensing of Environment, 115(5), 1145-1161
  • Referans45 National Remote Sensing Centre, (2012) National Land Use Land Cover Mapping using Multi-temporal Satellite Data Technical Manual (2nd Cycle) NRSC, Hyderabad. 66 p,
  • Referans46https://ssdi.jk.gov.in/profiles/dkan/themes/nuboot_radix/templates/page/homepage/Technical%20Manual%20LULC%202nd%20Cycle.pdf
  • Referans47 Navulur K (2007) Multispectral Image Analysis Using the Object-based Paradigm. Florida, U.S.A: CRC Press
  • Referans48 Phiri, D., Morgenroth, J. (2017). Developments in landsat land cover classification methods: A review. Remote Sensing,9(9), 967.
  • Referans49 Republic of Turkey Ministry of Agriculture and Forestry, (2018) Corine Land Cover Data, https://corinecbs.tarimorman.gov.tr/corine
  • Referans50 Ruffault J, Curt T., Moron V et al (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Sci Rep 10, 13790. https://doi.org/10.1038/s41598-020-70069-z
  • Referans51 Sang, X, Guo Q, Wu X et al (2021) The Effect of DEM on the Land Use/Cover Classification Accuracy of Landsat OLI Images. J Indian Soc Remote Sens 49, 1507–1518. https://doi.org/10.1007/s12524-021-01318-5
  • Referans52 Sekertekin A, Marangoz AM, Akcin H (2017) Pixelbased classification analysis of land use land cover using sentinel-2 and landsat-8 data Int. Arch. Photogrammetry Remote Sens. Spatial Information Sci., XLII-4/W6, pp. 91-93
  • Referans53 Sertel E, Yay I (2014) Vineyard parcel identification from Worldview-2 images using object-based classification model. Journal of Applied Remote Sensing, 8(1), 083535. doi:10.1117/1.JRS.8.083535
  • Referans54 Sertel E, Algancı U (2016) Comparison of pixel and object-based classification for burned area mapping using SPOT-6 images. Geomatics, Natural Hazards and Risk, 7(4), 1198-1206, doi: 10.1080/19475705.2015.1050608
  • Referans55 Sertel E, Musaoglu N, Alp G, Algan YI, Kaya Ş, Yüksel B, Yılmaz A (2018) 1:25.000 Ölçekli Ulusal Arazi Örtüsü/Kullanımı Sınıflandırma Sistemi ile HGK TOPOVT Veritabanının Karşılaştırılması. Harita Dergisi, 160, 34-46
  • Referans56 Story M, Congalton RG (1986) Accuracy assessment: A user’s perspective. Photogrammetric Engineering and Remote Sensing, 52(3), 397–399
  • Referans57 Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2015) Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America, 102(23), 8245–8250 https://doi.org/10.1073/pnas.0409902102
  • Referans 58 Tampubolon T, Abdullah K, Hwee L (2013) Comparison of pixel and object based approaches using landsat data for land use and land cover classification in coastal zone of Medan, Sumatera. International Journal of Tomography & Simulation, 24(3).
  • Referans 59 Turkish Statistical Institute (2020) https://biruni.tuik.gov.tr/medas/?kn=95&locale=tr
  • Referans 60 USGS- United States Geological Survey (2021) https://earthexplorer.usgs.gov/
  • Referans61 Ustaoğlu B, İkiel C, Atalay Dutucu A, Koç DE (2021). Erosion Susceptibility Analysis in Datça and Bozburun Peninsulas, Turkey. Iran J Sci Technol Trans Sci 45, 557–570 (2021). https://doi.org/10.1007/s40995-020-01053-5
  • Referans62 Van Deusen, PC (1996) Unbiased estimates of class proportions from thematic maps. Photogrammetric Engineering and Remote Sensing, 62(4), 409–412
  • Referans63 Wei W, Chen X, Ma A (2005) Object-Oriented Information Extraction and Application in High-Resolution Remote Sensing Image. In Proceedings of the Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, IGARSS ’05.; IEEE: Seoul, Korea, 2005; Vol. 6, pp. 3803–3806, doi:10.1109/IGARSS.2005.1525737.
  • Referans64 Witharana C, Civco DL (2014) Optimizing multiresolution segmentation scale using empirical methods: Exploring the sensitivity of the supervised discrepancy measure Euclidean distance 2 (ED2). ISPRS Journal of Photogrammetry and Remote Sensing, 87, 108-12

Land cover change analysis between 1990 and 2021 using Landsat images and object-based classification: A case study in Bodrum peninsula, Aegean Region, Turkey

Year 2022, , 101 - 119, 29.06.2022
https://doi.org/10.51800/ecd.1087278

Abstract

Bodrum Peninsula is one of the most important tourism centers of Turkey with its geographical location, coastal and marine tourism, natural and cultural features. It has been determined that the winter population has also increased in Bodrum in recent years, and it is thought that this may cause an increasing permanent resident population and urbanization. The objective of this study is to determine the changes in land cover due to the rapid increase in urbanization in Bodrum Peninsula. For this purpose, object-based classification analysis was applied to Landsat 4-5 TM 1990, 2000, 2010 and Landsat 8 OLI 2021 multispectral satellite images. Within the scope of the analysis, the objects were created by applying the segmentation process to satellite images. Secondly, land cover classes were determined according to the Corine land cover classification with levels 1-2-3. Thirdly, the classification process based on a decision tree was carried out with the classes defined using the threshold values determined for spectral and texture properties of the objects using multiresolution segmentation. In the last stage, accuracy assessment analysis was applied to the classification results. According to the results, it is obtained that while Urban Fabric and Burnt Areas are increased in 32 years, Forest and semi-natural areas are decreased. As a result of population pressure due to tourism, Urban Fabric areas have moved closer to Forests and Semi-Natural Areas. Wildfires with the effect of heatwaves were increased, biodiversity has been endangered in the study area located in the Mediterranean basin, where human-related climate change is most clearly detected. Significantly, there has been a wildfire in Bodrum in August 2021, which lasted for days and caused severe degradation on the land cover. For this, sustainable land cover management is recommended to protect the natural ecosystem by minimizing the risks that cause land degradation in the Bodrum peninsula.

References

  • Referans1 Aahlaad M, Mozumder, C, Tripathi N et al (2021) An Object-Based Image Analysis of WorldView-3 Image for Urban Flood Vulnerability Assessment and Dissemination Through ESRI Story Maps. J Indian Soc Remote Sens. https://doi.org/10.1007/s12524-021-01416-4
  • Referans2 Alevkayalı Ç, Tağıl Ş (2018) Ortak Malların Trajedisi Üzerine Teoriler: Gediz Deltası’nda Arazi Kullanımı-Arazi Örtüsü Değişimi. Süleyman Demirel Üniversitesi Fen-Edebiyat Fakültesi Sosyal Bilimler Dergisi, 43, 120-142
  • Referans3 Algancı U (2018) Arazi Örtüsü Değişimlerinin Çok Zamanlı Landsat 8 Uydu Görüntüleri ile Belirlenmesi: İstanbul Örneği. Harita Dergisi, 160, 24-33
  • Referans4 Algancı U, Besol B, Sertel, E (2018) Accuracy Assessment of Different Digital Surface Models. ISPRS International Journal of Geo-Information, 7(114)
  • Referans5 Anderson James R, Ernest E Hardy, John T Roach, and Richard E. Witmer (1976) A Land Use and Land Cover Classification System For Use With Remote Sensor Data. USGS Professional Paper 964. A revision of the land use classification system as presented in the USGS Circular 671, https://pubs.usgs.gov/pp/0964/report.pdf
  • Referans6 Avashia V, Parihar S, Garg A (2020) Evaluation of Classification Techniques for Land Use Change Mapping of Indian Cities. J Indian Soc Remote Sens 48, 877–908. https://doi.org/10.1007/s12524-020-01122-7
  • Referans7 Atalay İ, Sezer İL, Çukur H (1998) The Ecologic Proporties of Red Pine (Pinus brutia Ten.) Forests and Their Regioning in terms of Seed Transfer. Ege Üniversitesi Basımevi, İzmir.
  • Referans8 Atalay İ (2005) Türkiye Vejetasyon Coğrafyası. Meta Basım Matbaacılık, İzmir.
  • Referans9 Baatz M, Schape A (2000) Multi resolution segmentation: an optimization approach for high quality multi scale image segmentation. Proceedings of Twelfth Angewandte Geographische Informations verarbeitung Wichmann-Verlag, Heidelberg, ss.12−23
  • Referans10 Bakış R, Arı G (2010) Bodrum Yarımadasının İçme-Kullanma Suyu Problemi ve Çözüm Önerileri. Tarım Bilimleri Araştırma Dergisi, 3(2), 71-80, 2010 ISSN: 1308-3945, E-ISSN: 1308-027X
  • Referans11 Baylan K, Ustaoğlu B (2020) Emberger Biyoiklim Sınıflandırmasına Göre Türkiye’de Akdeniz Biyoiklim Katlarının ve Alt Tiplerinin Dağılısı. Ulusal Çevre Bilimleri Araştırma Dergisi, 3(3), 158-174.
  • Referans12 Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M (2004) Multi-resolution object-based fuzzy analysis of remote sensing data for GIS- ready information. ISPRS Journal of Photogramemetry and Remote Sensing, 58(3-4), 239-258
  • Referans13 Bhatta B (2010) Analysis of Urban Growth and Sprawl from Remote Sensing Data. Springer-Verlag Berlin Heidelberg. DOI 10.1007/978-3-642-05299-6
  • Referans14 Blaschke T (2010) Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2-16
  • Referans15 Chamber of Shipping. (2020) https://www.denizticaretodasi.org.tr/tr/sayfalar/turkiyedeki-marinalar
  • Referans16 Cürebal İ., Efe R. Soykan A., 2019 "Spatial and Temporal Change of Bursa City Settlement Area (1955-2018) and Environmental Impacts of Expansion", Theory and Practice in Social Sciences, ed. Viliyan Krystev, Recep Efe, & Emin Atasoy, Sofia: St. Kliment Ohridski University Press, 2019, ss. 213-226
  • Referans17 Cohen, J (1960) A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46 Referans18 Doğaner S (2001) Türkiye Turizm Coğrafyası. Çantay Kitabevi. İstanbul, Türkiye
  • Referans19 Dutucu AA, İkiel C (2016) Çarşamba Ovası ve yakın çevresinde arazi örtüsü değişiminin uzaktan algılama ve coğrafi bilgi sistemleriyle analizi (1985-2013). International Journal of Human Sciences, 13(3), 5551-5560
  • Referans20 Efe R, Soykan A, Cürebal İ, Sönmez S (2012) Land use and land cover detection in Karinca river catchment (NW Turkey) using GIS and RS techniques. Journal of Environmental Biology, 33(2 suppl), 439-447
  • Referans21 Esetlili TM, Bektaş Balçık F, Balık Şanlı F, Üstüner M, Kalkan K, Gökse Ç, ... Gazioğl C (2018) Comparison of Object and Pixel-Based Classifications for Mapping Crops Using Rapideye Imagery: A Case Study of Menemen Plain,Turkey. International Journal of Environment and Geoinformatics , vol.5, no.2, 231-243.
  • Referans22 European Environment Agency, (2021) Corine Land Cover Classification Classes, https://land.copernicus.eu/pan-european/corine-land-cover
  • Referans23 Foody G M (2002) Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80,185–201
  • Referans24 Foody G M (2020) Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification, Remote Sensing of Environment, Volume 239, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2019.111630.
  • Referans25 Gupta N, Bhadauria HS (2014) Object based information extraction form high resolution satellite imagery using eCognition. International Journal of Computer Science Issues, Vol. 11, Issue 3, No. 2, pp. 139-144
  • Referans26 Hofmann P (2001) Detecting Urban Features From IKONOS Data Using an Object-based Approach. First Annual Conference of the Remote Sensing & Photogrammetry Society (pp. 28-33), 12-14 September
  • Referans27 PCC (2021) AR6 Climate Change 2021: The Physical Science Basis, https://www.ipcc.ch/report/ar6/wg1/#Regional
  • Referans28 İkiel C (2004) Muğla ilinin coğrafi özellikleri. A. A Çınar içinde, Muğla Kitabı (s.15-25). Muğla-İzmir
  • Referans29 İkiel C (2005) Muğla yöresinde iklim koşullarının insan ve çevre üzerine etkileri. Ulusal Coğrafya Kongresi (İsmail Yalçınlar anısına) (s. 233-241) 28-30 Eylül, İstanbul, Türkiye
  • Referans30 İkiel C, Ustaoğlu B, Kılıç DE, Dutucu AA (2013) Remote sensing and GIS based integrated analysis of land cover change in Duzce plain and its surroundings north western Turkey. Environmental Monitoring and Assessment, 185 (2), 1699-1709
  • Referans31 İkiel C, Ustaoğlu B, Dutucu AA, Kılıç DE (2019) Determination Of Land Cover Change in Datça and Bozburun Peninsula İn Turkey (1997-2018). 2019 8th International Conference On Agro-Geoinformatics (Agro-Geoinformatics), Doi:10.1109/Agro-Geoinformatics
  • Referans32 Kalkan K, Maktav D (2010) Nesne Tabanlı ve Piksel Tabanlı Sınıflandırma Yöntemlerinin Karşılaştırılması (IKONOS Örneği). III. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Sempozyumu (s.153-160), 11-13 Ekim, Gebze-Kocaeli, Türkiye
  • Referans33 Kavak, KŞ (2018) Uzaktan Algılama ve Görüntü Yorumlama. Ankara, Türkiye: Palme Yayınevi
  • Referans34 Kavzoglu, T, Yıldız M (2014) Parameter-Based performance analysis of object-based image analysis using aerial and QuickBird-2 images. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 11(7), 31-37
  • Referans35 Kavzoglu T, Yıldız M (2015) Segmentasyonda Optimum Ölçek Parametresi Tespitinde Konumsal Otokorelasyon ve Varyansın Etkisinin Analizi. Türkiye Ulusal Fotogrametri ve Uzaktan Algılama Birliği (TUFUAB) VIII. Teknik Sempozyumu, 21-23 Mayıs, Selçuk Üniversitesi – Konya
  • Referans36 Koç DE, Biltekin D, Ustaoğlu B (2021) Modelling potential distribution of Carpinus betulus in Anatolia and its surroundings from the Last Glacial Maximum to the future. Arab J Geosci 14, 1186. https://doi.org/10.1007/s12517-021-07444-1
  • Referans37 Kodal T (2008) Atatürk Döneminde Bodrum’un Nüfus Yapısı (1923-1938). SDÜ Fen Edebiyat Fakültesi Sosyal Bilimler Dergisi, 17, 77-100
  • Referans38 Lambin EF, Turner BL, Geist H, Agbola S, Angelsen A, Bruce J, Coomes O, Dirzo R, Fischer G, Folke C, George PS, Homewood K, Imbernon J, Lemmans R, Li X, Moran E, Mortimore M, Ramakrishnan PS, Richards JF, Dkanes H, Steffen W, Stone GD, Svedin U, Veldkamp T, Vogel C, Xu J (2001) The causes of land-use and land-cover change: moving beyond the myths. Global Environmental Change, 11, 261– 269
  • Referans39 Li C, Shao G (2012) Object-based classification of land use / cover using digital aerial orthophotography. International Journal of Remote Sensing, 33(4), 922-938
  • Referans40 Lillesand TM, Kiefer RW, Chipman, JW (2007) Remote Sensing and Image Interpretation. Sixth edition, New York, USA: John Wiley & Sons
  • Referans41 Mishra, PK, Rai A, Rai SC (2020) Land Use and Land Cover Change Detection using Geospatial Techniques in Sikkim Himalaya, India. Egyptian Journal of Remote Sensing and Space Sciences. 23 (2):133-143. doi.org/10.1016/j.ejrs.2019.02.001
  • Referans42 Mishra, PK, Rai, A (2021) Role of Unmanned Aerial Systems for Natural Resource Management. J Indian Soc Remote Sens 49, 671–679 https://doi.org/10.1007/s12524-020-01230-4
  • Referans43 Mitri GH, Gitas IZ (2006) Fire type mapping using object-based classification of Ikonos imagery. Int J Wildland Fire. 15:457462.
  • Referans44 Myint SW, Gober P, Brazel A, Grossman-Clarke S, Weng QH (2011) Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sensing of Environment, 115(5), 1145-1161
  • Referans45 National Remote Sensing Centre, (2012) National Land Use Land Cover Mapping using Multi-temporal Satellite Data Technical Manual (2nd Cycle) NRSC, Hyderabad. 66 p,
  • Referans46https://ssdi.jk.gov.in/profiles/dkan/themes/nuboot_radix/templates/page/homepage/Technical%20Manual%20LULC%202nd%20Cycle.pdf
  • Referans47 Navulur K (2007) Multispectral Image Analysis Using the Object-based Paradigm. Florida, U.S.A: CRC Press
  • Referans48 Phiri, D., Morgenroth, J. (2017). Developments in landsat land cover classification methods: A review. Remote Sensing,9(9), 967.
  • Referans49 Republic of Turkey Ministry of Agriculture and Forestry, (2018) Corine Land Cover Data, https://corinecbs.tarimorman.gov.tr/corine
  • Referans50 Ruffault J, Curt T., Moron V et al (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Sci Rep 10, 13790. https://doi.org/10.1038/s41598-020-70069-z
  • Referans51 Sang, X, Guo Q, Wu X et al (2021) The Effect of DEM on the Land Use/Cover Classification Accuracy of Landsat OLI Images. J Indian Soc Remote Sens 49, 1507–1518. https://doi.org/10.1007/s12524-021-01318-5
  • Referans52 Sekertekin A, Marangoz AM, Akcin H (2017) Pixelbased classification analysis of land use land cover using sentinel-2 and landsat-8 data Int. Arch. Photogrammetry Remote Sens. Spatial Information Sci., XLII-4/W6, pp. 91-93
  • Referans53 Sertel E, Yay I (2014) Vineyard parcel identification from Worldview-2 images using object-based classification model. Journal of Applied Remote Sensing, 8(1), 083535. doi:10.1117/1.JRS.8.083535
  • Referans54 Sertel E, Algancı U (2016) Comparison of pixel and object-based classification for burned area mapping using SPOT-6 images. Geomatics, Natural Hazards and Risk, 7(4), 1198-1206, doi: 10.1080/19475705.2015.1050608
  • Referans55 Sertel E, Musaoglu N, Alp G, Algan YI, Kaya Ş, Yüksel B, Yılmaz A (2018) 1:25.000 Ölçekli Ulusal Arazi Örtüsü/Kullanımı Sınıflandırma Sistemi ile HGK TOPOVT Veritabanının Karşılaştırılması. Harita Dergisi, 160, 34-46
  • Referans56 Story M, Congalton RG (1986) Accuracy assessment: A user’s perspective. Photogrammetric Engineering and Remote Sensing, 52(3), 397–399
  • Referans57 Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2015) Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America, 102(23), 8245–8250 https://doi.org/10.1073/pnas.0409902102
  • Referans 58 Tampubolon T, Abdullah K, Hwee L (2013) Comparison of pixel and object based approaches using landsat data for land use and land cover classification in coastal zone of Medan, Sumatera. International Journal of Tomography & Simulation, 24(3).
  • Referans 59 Turkish Statistical Institute (2020) https://biruni.tuik.gov.tr/medas/?kn=95&locale=tr
  • Referans 60 USGS- United States Geological Survey (2021) https://earthexplorer.usgs.gov/
  • Referans61 Ustaoğlu B, İkiel C, Atalay Dutucu A, Koç DE (2021). Erosion Susceptibility Analysis in Datça and Bozburun Peninsulas, Turkey. Iran J Sci Technol Trans Sci 45, 557–570 (2021). https://doi.org/10.1007/s40995-020-01053-5
  • Referans62 Van Deusen, PC (1996) Unbiased estimates of class proportions from thematic maps. Photogrammetric Engineering and Remote Sensing, 62(4), 409–412
  • Referans63 Wei W, Chen X, Ma A (2005) Object-Oriented Information Extraction and Application in High-Resolution Remote Sensing Image. In Proceedings of the Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, IGARSS ’05.; IEEE: Seoul, Korea, 2005; Vol. 6, pp. 3803–3806, doi:10.1109/IGARSS.2005.1525737.
  • Referans64 Witharana C, Civco DL (2014) Optimizing multiresolution segmentation scale using empirical methods: Exploring the sensitivity of the supervised discrepancy measure Euclidean distance 2 (ED2). ISPRS Journal of Photogrammetry and Remote Sensing, 87, 108-12
There are 63 citations in total.

Details

Primary Language English
Subjects Human Geography
Journal Section Research Articles
Authors

Beyza Ustaoğlu 0000-0002-9876-3027

Publication Date June 29, 2022
Submission Date March 13, 2022
Acceptance Date June 3, 2022
Published in Issue Year 2022

Cite

APA Ustaoğlu, B. (2022). Land cover change analysis between 1990 and 2021 using Landsat images and object-based classification: A case study in Bodrum peninsula, Aegean Region, Turkey. Ege Coğrafya Dergisi, 31(1), 101-119. https://doi.org/10.51800/ecd.1087278