BibTex RIS Cite

-

Year 2015, Volume: 2 Issue: 2, 41 - 59, 08.06.2015
https://doi.org/10.31202/ecjse.67133

Abstract

In this study, the applicability of the pneumatic drive system in internal combustion engines was investigated.Pneumatic motors are the machines expanded by getting fluid pressure gas into the cylinder. These type of motors, do not require ignition system, consume less lubrication oil, do not pollute the environment and can reuse exhaust fluid. Increasingly widespread use of pneumatic motors will allow more efficient use of domestic energy resources. In case of decrease the cost of filling pneumatic motor tanks, pneumatic motors can be more widely used in motorcycles, in public transportation vehicles, in hybrid engines, and also can be used in food, chemical and military industries

References

  • - J. Romm, The car and fuel of the future, Energy Policy, Article, 2006, 34, 2609-2614.
  • - T. Sağır, Pnömatik Motor Tasarımı ve Prototipinin İmalatı, Y.lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, 2006, 1-5, Anlara.
  • - N. Kahraman, S.O. Akansu, Otto motorlarına LPG dönüşümü yapılmasının ekonomik analizi, Niğde Üniversitesi Mühendislik Mimarlık Fakültesi Mühendislik Bilimleri Dergisi, 1997, 1,105-109.
  • - W.Vorst, J.G. Finegold, Automotive hydrogen engines, and onboard storage methods, Hydrogen Energy Fundamentals, Miami Beach, 1975, Florida.
  • - N. Kahraman, S. Akansu, B. Albayrak, İçten yanmalı motorlarda alternatif yakıt olarak hidrojenin kullanılması, Mühendis ve Makine, 2005, 48, 9-15.
  • - H.R. Martin, D. Mcloy, The control of fluid power, 1973, 1-187.
  • - www.freepatentsonline.com/4311084.html, V. P. Richard, Pneumatic Engine, 2007.
  • - www.freepatentsonline.com/3885387.html, G. J. Simington, Air Drive Adaptor, 2007.
  • - www.freepatentsonline.com/4102130.html, H. C. Stricklin, Converting an Internal Combustion Engine to a Single Acting Engine Driven by Stream or Compressed Air, 2007.
  • - www.freepatentsonline.com/4337842.html, R. P. Spangler, Vehicle Powered by Air Pressure Engine, 2007.
  • - www.freepatentsonline.com/4124978.html, İnternet: W. C. Wagner, “Compressed Air Engine”, 2007.
  • - www.freepatentsonline.com/4018050.html, J. F. Murphy, Compressed Air - Operated Motor Employing Dual Lobe Cams, 2007.
  • - www.freepatentsonline.com/20030209013.html, T. Yu-Chi, Piston Air Engine, 2007.
  • - www.freepatentsonline.com/4651525.html, L. G. Cestero, Piston Reciprocating Compressed Air Engine, 2007.
  • - www.freepatentsonline.com/4355508.html, S. J. Blenke, Air Power Motor, 2007.
  • - www.freepatentsonline.com/6006519.html, J. V. Hormell, Compressed Air-Powered Engine, 2007.
  • - C. Knowlen, A.T. Mattick, A. P. Bruckner, A. Hertzbeg, High efficiency energy conversion system for liquid nitrogen automobiles, Society Automotive Eng, Paper, 1998, No 981898.
  • - www.aa.washington.edu/aerp/CRYOCAR/homepage/index.htm, LN 2000, The University of Washington’s Liquid Nitrogen Propelled Automobiles, 2006.
  • - S. Sahu, Some Feasibility Investigations on Pneumatic Primemover for a Small Vehicle, M.S(r) thesis, Mechanical Eng. Department, 2000, 10–15, Delhi.
  • - www.theaircar.com, Moteur Development International (MDI), 2008.
  • - C. Knowlen, A.T. Mattick, H. Deparis, A. Hertzberg, Quasi-isothermal expansion engines for liquid nitrogen automotive propulsion, Society Automotive Eng, Paper, 1997, No. 972649.
  • - C. Knowlen, A. T. Mattick, A. P. Bruckner, A. Hertzberg, High-efficiency energy-conversion systems for liquid-nitrogen automobiles, Society Automotive Eng., 1998, Paper No. 981898.
  • - www.zevcat.com/media/MDI_History.pdf, 2007.
  • - K David Huang, T. Sheng-Chung, M. Wei-Ping, C. Wei-Chuan, Hybrid pneumatic-power system which recycles exhaust gas of an internal-combustion engine, Applied Energy, 2005, 82, 117–132.
  • - K. David Huang, T. Sheng-Chung, C. Wei-Chuan, Energy-saving hybrid vehicle using a pneumatic-power system, Applied Energy, 2005, 81, 1–18.
  • - X. Wang, T. Tsao,; C. Tai, H. Kang, P. Blumberg, Modeling of compressed air hybrid operation for a heavy duty diesel engine, J. Eng. Gas Turbines Power Trans, 2009, 131, 052802:1–052802:8.
  • - M. Schechter, Regenerative compression braking-a low cost alternative to electric hybrids, SAE Paper, 2000, 01-1025.
  • - P. Higelin, A. Charlet, Y. Chamaillard, Thermodynamic simulation of a hybrid pneumatic-combustion engine concept, International Journal of Applied Thermodynamics, 2002, 5, 1-11, ISSN 1301 9724.
  • - I. Vasile, P. Higelin, A. Charlet, and Y. Chamaillard, Downsized engine torque lag compensation by pneumatic hybridization, in 13th International Conference on Fluid Flow Technologies, 2006.
  • - P. Higelin, I. Vasile, A. Charlet, and Y. Chamaillard, Parametric optimization of a new hybrid pneumatic combustion engine concept, Int. J. Engine Res., 2004, vol. 5, no. 2, pp. 205–217.
  • - H. Kang, C. Tai, X. Wang, T.-C. Tsao, P. N. Blumberg, and J. Stewart, Demonstration of air-power-assist (APA) engine technology for clean combustion and direct energy recovery in heavy-duty application, SAE, 2008 Paper 2008-01-1197.
  • - S. Trajkovic, P. Tunestal, and B. Johansson, Investigation of different valve geometries and valve timing strategies and their effect on regenerative efficiency for a pneumatic hybrid with variable valve actuation, SAE Paper, 2008, 01-1715.
  • - M. M. Schechter, New cycles for automobile engines, Society Automotive Eng, 1999, 01-0623.
  • - C. Tai, T. C. Tsao, Using camless valvetrain for air hybrid optimization, Society Automotive Eng, 2003, 01-0038.
  • - A. Fazeli, A. Khajepour, C. Devaud, A novel compression strategy for air hybrid engines, Applied Energy, 2011, 88, 2955–2966.
  • - W. Ochel, O. Beyerman, F. Gehrman, Multicylinder 4-stroke cycle diesel engine and compressor, 1954, US Patent 2676752.
  • - S. Trajkovic, A. Milosaljevic, P. Tunestal, B. Johansen, FPGA controlled pneumatic variable valve actuation, Society Automotive Eng, 2006, 01-0041.
  • - S. Trajkovic, P. Tunestol, B. Johansen, Introductory study of variable valve actuation for pneumatic hybridization, Society Automotive Eng, 2007, 01-0288.
  • - T. Sağır, Pnömatik Motor Tasarımı ve Prototipinin İmalatı, Y.lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, 2006, 1-5, Ankara.
  • - P. Higelin, I. Vasile, A. Charlet, Y. Chamaillard, Parametric optimization of hybrid pneumatic–combustion engine concept, Int. J. Eng. Res., 2003, 5 (2), 205–217.
  • - D, Huang, V.Quang, K. Tseng, Experimental study of exhaust gas energy recycling efficiency of hybrid pneumatic power system, International Journal of Energy Research, Int. J. Energy Res.; 2009, 33, 931-942.
  • - J. Van Mierlo, G. Maggetto, P. Lataire,Which energy source for road transport in the future a comparison of battery, hybrid and fuel cell vehicles, Energy Conversion and Management, 2006, 47, 48-60.
  • - www.aircaraccess.com/articl01.htm, Pneumatic Options Compressed Air’s Ultimate Secret, 2006.
  • - H. M. Mahgoub, I. A. Craighead, Development of a microprocessor-based control system for a pneumatic rotary actuator, Mechatronics, 1995, 5, 541–60.
  • - J. Wang, Modelling study and servo-control of air motor systems, International Hournal Control, 1998, 3, 459-476.
  • - J. Ke, K. Tharapalan, J. Wang, H. Wu, Development of energy efficient optimal control for servo pneumatic cylinders, Control 2004, University of Bath, UK, 2004, 119.
  • - M. O. Tokhi, I. N. Reynolds, M. Brisland, Real time control of a radial piston air motor, IFAC World Congress, 2002, Barcelona.
  • - C. Ping-lu, Y. Xiao-li, L. Lin, Simulation and experimental study of electro-pneumatic valve used in air-powered engine, Journal of Zhejiang University Science A, 2009, 10 (3), 377-383.
  • - S. R. Pandian, Control performance of an air motor, In: IEEE proceedings of the 1999 international conference on robotics and automation, 2003, 518–24, Detroit, Michigan.
  • - M. O. Tokhi, M. Al-Miskiry, Brisland M. real time control of air motors using a pneumatic H-bridge, Control Eng Pract, 2001, 9, 449–57.
  • - Y. Chang, A. Nishi, Low-pressure air-motor for wall-climbing robot actuation, Mechatronics, 2003, 13, 377–92.
  • - S. Yu-Ta, H. Yean-Ren, Design and implementation of an air-powered motorcycles, Applied Energy, 2009, 86, 1105–1110.
  • - C. Pinglu, Y. Xiaoli, N., F.Xianghong, Yidong, Modelling and simulation analiysis on paralel hybrid air-fuel vehicle, Energy Power Engineering, DOİ 10.1007/s11708-010-0008-y, China.
  • - C. Dönitz, J. Vasile, C. Onder, L. Guazzella, Dynamic programming for hybrid pneumatic vehicles, American Control Conference,2009, 97-474-244-524-0/09, St. Louis, MO, USA.
  • - Z. Xu, X. Xie, A Method for reducing exhaust pressure of vehicle compressed air powered engine, International Conference on Mechatronics and Automation, 2012, 978-1-4244-2693-5/09, China.
  • - E. J. Barth, M. A. Gogola, M. Goldfarb, Modelling and control of a monopropellant based pneumatic actuauion system, IEEE International Conference on Robotics&Automation, 2003, 628-633, Taipel, Taiwan.
  • - M. A. Kunt, Pistonlu bir motorun basınçlı hava motoruna dönüştürülmesi ve performans analizi, Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, 2011, 13-19, Ankara.
  • - H. Güneş, Bir pnömatik motor kontrol sisteminin teorik ve deneysel analizi, Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Enstitisü, 2012, 21-25, Ankara.
  • - Ali I, Yang K, Kim S. E3 system - a two speed accessory belt drive system for reduced fuel consumption. Society of Automotive Engineers, 2008, 01-1521.
  • - Donitz C, Vasile L, Onder C, Guzzella L. Modelling and optimizing two- and four-stroke hybrid pneumatic engines. Proc Inst Mech Eng, Part D: J Automob Eng, 2009, 223(2):255–80.
  • - Voser, C.; Donitz, C.; Ochsner, G.; Onder, C.; Guzzella, L., In-cylinder boosting of turbocharged spark-ignited engines Part 1: Model-based design of the charge valve, Proc. Inst. Mech. Eng. Part D J. Autom. Eng., 2012, 226, 1408–1418.
  • - Voser, C.; Ott, T.; Donitz, C.; Vasile, I.; Onder, C.; Guzzella, L., In-cylinder boosting of turbocharged spark-ignited engines Part 2: Control and experimental verification, Proc. Inst. Mech. Eng. Part D J. Autom. Eng., 2012, 226, 1564–1574.
  • - Haisheng C., Yulong D., Yangliang L., Xinjing Z., Chuqing T., Air fuelled zero emission road transportation:A comparative study, Applied Energy, 2011, 88:337-342.
  • - Chen H., Cong TN., Yang W., Tan C., Li Y., Ding Y., Process in electrical energy storage system-a critical rewiew, Prog. Nat. Sci., 2009, 19(3):291-312.
  • - www.efcf.com/reports/E18.pdf, Mazza P., Hammerschlag R., Wind-to-wheel energy assesment, European Fuel Cell Forum, 2009.
  • - www.epa.gov.tw; Taiwan EPA, 2007.
  • - www.yale.edu/globalist, Global 21 ,How Green Are Green Cars?, 2006.
  • - S. R. Pandian, Control performance of an air motor, International Conference on Robotics and Automation, 1999, 518-524, Detroit.
  • - A. L. Hitchcox, Performance insurance for air motors, Hydraulics &Pneumatics, 1995, 48 (10), 63-68.
  • - Automation Air Motors, Air motor flow control system–development project, Automation Air Motors Ltd., 1998, Barnsley, UK.
  • - J. Mahanay, Gerotor air motor: new motion for low-speed output, Machine Design, 1986, 58, (3), 75-77.
  • - G. Morgan, Motors that run on air, Power Transmission Design, 1984, 26 (9), 35-38.
  • - I. N. Reynolds, Modelling and control of an air motor, MSc Dissertation, Department of Automatic Control and Systems Engineering, The University of Sheffield, 2000, UK..
  • - M. H. Saheed,. Neural and genetic modelling control and real time finite simulation of flexible manipulator, PhD Thesis, Department of Automatic Control and System Engineering, The University of Sheffield, 2000, UK..
  • - J. S. Shamma, M. Athans, Potential hazards and possible remedies, IEEE Control Systems Magazine, 1992, 12 (3), 101–107.
  • - R. W. Simnett, E. Anderson, Air motor drives for small pumps, Chemical Engineering, 1983, 90 (25), 73-75.
  • - J. L. Cai, X. L. Yu, G. J. Yuan, Y. M. Shen,. Influence of port timing on work process of air-powered engine, Journal of Zhejiang University, 2004, 38(1), 65-69, Chinese.
  • - C. Q. Zuo, Y. J. Qian, D. An, M. G. Ouyang, F. Y. Yang., Experimental study on air-powered engine. Chinese Journal of Mechanical Engineering, 2007, 43(4), 93-97, Chinese.
  • - M. Manish, P. P. Rathod, S. S. Arvind, Study and development of compressed air engine-single cylinder ‘an experiment set up, International Journal of Advanced Engineering Research and Studies, 2012, 1, 131-132.
  • - M. Andersson, B. Johansson, A. Hultqvist, An air hybrid for high power absorption and discharge, Society Automotive Eng, 2005, 01-2137.

İçten Yanmalı Motorlarda Pnömatik Tahrik Sistemlerinin Uygulanabilirliği Üzerine Bir Çalışma

Year 2015, Volume: 2 Issue: 2, 41 - 59, 08.06.2015
https://doi.org/10.31202/ecjse.67133

Abstract

Bu çalışmada içten yanmalı motorlarda pnömatik tahrik sistemlerinin uygulanabilirliği araştırılmıştır. Pnömatik motorlar silindir içerisine basınçlı gaz akışkan alarak genişleme işi elde eden makinelerdir. Bu motorlar ateşleme sistemi gerektirmeyen, daha az yağlama yağı tüketen, çevre kirliliği bulunmayan ve egzoz akışkanını yeniden kullanabilen makinelerdir. Pnömatik motorların yaygınlaşması yerli enerji kaynaklarının da daha etkin kullanılmasını sağlayacaktır. Pnömatik motor depolarının doldurma maliyetlerinin azaltılması halinde bu motorlar motosiklet, toplu taşıma araçları, hibrit motorlarda, gıda, kimya ve askeri sanayide daha yaygın kullanılabilecektir.

References

  • - J. Romm, The car and fuel of the future, Energy Policy, Article, 2006, 34, 2609-2614.
  • - T. Sağır, Pnömatik Motor Tasarımı ve Prototipinin İmalatı, Y.lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, 2006, 1-5, Anlara.
  • - N. Kahraman, S.O. Akansu, Otto motorlarına LPG dönüşümü yapılmasının ekonomik analizi, Niğde Üniversitesi Mühendislik Mimarlık Fakültesi Mühendislik Bilimleri Dergisi, 1997, 1,105-109.
  • - W.Vorst, J.G. Finegold, Automotive hydrogen engines, and onboard storage methods, Hydrogen Energy Fundamentals, Miami Beach, 1975, Florida.
  • - N. Kahraman, S. Akansu, B. Albayrak, İçten yanmalı motorlarda alternatif yakıt olarak hidrojenin kullanılması, Mühendis ve Makine, 2005, 48, 9-15.
  • - H.R. Martin, D. Mcloy, The control of fluid power, 1973, 1-187.
  • - www.freepatentsonline.com/4311084.html, V. P. Richard, Pneumatic Engine, 2007.
  • - www.freepatentsonline.com/3885387.html, G. J. Simington, Air Drive Adaptor, 2007.
  • - www.freepatentsonline.com/4102130.html, H. C. Stricklin, Converting an Internal Combustion Engine to a Single Acting Engine Driven by Stream or Compressed Air, 2007.
  • - www.freepatentsonline.com/4337842.html, R. P. Spangler, Vehicle Powered by Air Pressure Engine, 2007.
  • - www.freepatentsonline.com/4124978.html, İnternet: W. C. Wagner, “Compressed Air Engine”, 2007.
  • - www.freepatentsonline.com/4018050.html, J. F. Murphy, Compressed Air - Operated Motor Employing Dual Lobe Cams, 2007.
  • - www.freepatentsonline.com/20030209013.html, T. Yu-Chi, Piston Air Engine, 2007.
  • - www.freepatentsonline.com/4651525.html, L. G. Cestero, Piston Reciprocating Compressed Air Engine, 2007.
  • - www.freepatentsonline.com/4355508.html, S. J. Blenke, Air Power Motor, 2007.
  • - www.freepatentsonline.com/6006519.html, J. V. Hormell, Compressed Air-Powered Engine, 2007.
  • - C. Knowlen, A.T. Mattick, A. P. Bruckner, A. Hertzbeg, High efficiency energy conversion system for liquid nitrogen automobiles, Society Automotive Eng, Paper, 1998, No 981898.
  • - www.aa.washington.edu/aerp/CRYOCAR/homepage/index.htm, LN 2000, The University of Washington’s Liquid Nitrogen Propelled Automobiles, 2006.
  • - S. Sahu, Some Feasibility Investigations on Pneumatic Primemover for a Small Vehicle, M.S(r) thesis, Mechanical Eng. Department, 2000, 10–15, Delhi.
  • - www.theaircar.com, Moteur Development International (MDI), 2008.
  • - C. Knowlen, A.T. Mattick, H. Deparis, A. Hertzberg, Quasi-isothermal expansion engines for liquid nitrogen automotive propulsion, Society Automotive Eng, Paper, 1997, No. 972649.
  • - C. Knowlen, A. T. Mattick, A. P. Bruckner, A. Hertzberg, High-efficiency energy-conversion systems for liquid-nitrogen automobiles, Society Automotive Eng., 1998, Paper No. 981898.
  • - www.zevcat.com/media/MDI_History.pdf, 2007.
  • - K David Huang, T. Sheng-Chung, M. Wei-Ping, C. Wei-Chuan, Hybrid pneumatic-power system which recycles exhaust gas of an internal-combustion engine, Applied Energy, 2005, 82, 117–132.
  • - K. David Huang, T. Sheng-Chung, C. Wei-Chuan, Energy-saving hybrid vehicle using a pneumatic-power system, Applied Energy, 2005, 81, 1–18.
  • - X. Wang, T. Tsao,; C. Tai, H. Kang, P. Blumberg, Modeling of compressed air hybrid operation for a heavy duty diesel engine, J. Eng. Gas Turbines Power Trans, 2009, 131, 052802:1–052802:8.
  • - M. Schechter, Regenerative compression braking-a low cost alternative to electric hybrids, SAE Paper, 2000, 01-1025.
  • - P. Higelin, A. Charlet, Y. Chamaillard, Thermodynamic simulation of a hybrid pneumatic-combustion engine concept, International Journal of Applied Thermodynamics, 2002, 5, 1-11, ISSN 1301 9724.
  • - I. Vasile, P. Higelin, A. Charlet, and Y. Chamaillard, Downsized engine torque lag compensation by pneumatic hybridization, in 13th International Conference on Fluid Flow Technologies, 2006.
  • - P. Higelin, I. Vasile, A. Charlet, and Y. Chamaillard, Parametric optimization of a new hybrid pneumatic combustion engine concept, Int. J. Engine Res., 2004, vol. 5, no. 2, pp. 205–217.
  • - H. Kang, C. Tai, X. Wang, T.-C. Tsao, P. N. Blumberg, and J. Stewart, Demonstration of air-power-assist (APA) engine technology for clean combustion and direct energy recovery in heavy-duty application, SAE, 2008 Paper 2008-01-1197.
  • - S. Trajkovic, P. Tunestal, and B. Johansson, Investigation of different valve geometries and valve timing strategies and their effect on regenerative efficiency for a pneumatic hybrid with variable valve actuation, SAE Paper, 2008, 01-1715.
  • - M. M. Schechter, New cycles for automobile engines, Society Automotive Eng, 1999, 01-0623.
  • - C. Tai, T. C. Tsao, Using camless valvetrain for air hybrid optimization, Society Automotive Eng, 2003, 01-0038.
  • - A. Fazeli, A. Khajepour, C. Devaud, A novel compression strategy for air hybrid engines, Applied Energy, 2011, 88, 2955–2966.
  • - W. Ochel, O. Beyerman, F. Gehrman, Multicylinder 4-stroke cycle diesel engine and compressor, 1954, US Patent 2676752.
  • - S. Trajkovic, A. Milosaljevic, P. Tunestal, B. Johansen, FPGA controlled pneumatic variable valve actuation, Society Automotive Eng, 2006, 01-0041.
  • - S. Trajkovic, P. Tunestol, B. Johansen, Introductory study of variable valve actuation for pneumatic hybridization, Society Automotive Eng, 2007, 01-0288.
  • - T. Sağır, Pnömatik Motor Tasarımı ve Prototipinin İmalatı, Y.lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, 2006, 1-5, Ankara.
  • - P. Higelin, I. Vasile, A. Charlet, Y. Chamaillard, Parametric optimization of hybrid pneumatic–combustion engine concept, Int. J. Eng. Res., 2003, 5 (2), 205–217.
  • - D, Huang, V.Quang, K. Tseng, Experimental study of exhaust gas energy recycling efficiency of hybrid pneumatic power system, International Journal of Energy Research, Int. J. Energy Res.; 2009, 33, 931-942.
  • - J. Van Mierlo, G. Maggetto, P. Lataire,Which energy source for road transport in the future a comparison of battery, hybrid and fuel cell vehicles, Energy Conversion and Management, 2006, 47, 48-60.
  • - www.aircaraccess.com/articl01.htm, Pneumatic Options Compressed Air’s Ultimate Secret, 2006.
  • - H. M. Mahgoub, I. A. Craighead, Development of a microprocessor-based control system for a pneumatic rotary actuator, Mechatronics, 1995, 5, 541–60.
  • - J. Wang, Modelling study and servo-control of air motor systems, International Hournal Control, 1998, 3, 459-476.
  • - J. Ke, K. Tharapalan, J. Wang, H. Wu, Development of energy efficient optimal control for servo pneumatic cylinders, Control 2004, University of Bath, UK, 2004, 119.
  • - M. O. Tokhi, I. N. Reynolds, M. Brisland, Real time control of a radial piston air motor, IFAC World Congress, 2002, Barcelona.
  • - C. Ping-lu, Y. Xiao-li, L. Lin, Simulation and experimental study of electro-pneumatic valve used in air-powered engine, Journal of Zhejiang University Science A, 2009, 10 (3), 377-383.
  • - S. R. Pandian, Control performance of an air motor, In: IEEE proceedings of the 1999 international conference on robotics and automation, 2003, 518–24, Detroit, Michigan.
  • - M. O. Tokhi, M. Al-Miskiry, Brisland M. real time control of air motors using a pneumatic H-bridge, Control Eng Pract, 2001, 9, 449–57.
  • - Y. Chang, A. Nishi, Low-pressure air-motor for wall-climbing robot actuation, Mechatronics, 2003, 13, 377–92.
  • - S. Yu-Ta, H. Yean-Ren, Design and implementation of an air-powered motorcycles, Applied Energy, 2009, 86, 1105–1110.
  • - C. Pinglu, Y. Xiaoli, N., F.Xianghong, Yidong, Modelling and simulation analiysis on paralel hybrid air-fuel vehicle, Energy Power Engineering, DOİ 10.1007/s11708-010-0008-y, China.
  • - C. Dönitz, J. Vasile, C. Onder, L. Guazzella, Dynamic programming for hybrid pneumatic vehicles, American Control Conference,2009, 97-474-244-524-0/09, St. Louis, MO, USA.
  • - Z. Xu, X. Xie, A Method for reducing exhaust pressure of vehicle compressed air powered engine, International Conference on Mechatronics and Automation, 2012, 978-1-4244-2693-5/09, China.
  • - E. J. Barth, M. A. Gogola, M. Goldfarb, Modelling and control of a monopropellant based pneumatic actuauion system, IEEE International Conference on Robotics&Automation, 2003, 628-633, Taipel, Taiwan.
  • - M. A. Kunt, Pistonlu bir motorun basınçlı hava motoruna dönüştürülmesi ve performans analizi, Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, 2011, 13-19, Ankara.
  • - H. Güneş, Bir pnömatik motor kontrol sisteminin teorik ve deneysel analizi, Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Enstitisü, 2012, 21-25, Ankara.
  • - Ali I, Yang K, Kim S. E3 system - a two speed accessory belt drive system for reduced fuel consumption. Society of Automotive Engineers, 2008, 01-1521.
  • - Donitz C, Vasile L, Onder C, Guzzella L. Modelling and optimizing two- and four-stroke hybrid pneumatic engines. Proc Inst Mech Eng, Part D: J Automob Eng, 2009, 223(2):255–80.
  • - Voser, C.; Donitz, C.; Ochsner, G.; Onder, C.; Guzzella, L., In-cylinder boosting of turbocharged spark-ignited engines Part 1: Model-based design of the charge valve, Proc. Inst. Mech. Eng. Part D J. Autom. Eng., 2012, 226, 1408–1418.
  • - Voser, C.; Ott, T.; Donitz, C.; Vasile, I.; Onder, C.; Guzzella, L., In-cylinder boosting of turbocharged spark-ignited engines Part 2: Control and experimental verification, Proc. Inst. Mech. Eng. Part D J. Autom. Eng., 2012, 226, 1564–1574.
  • - Haisheng C., Yulong D., Yangliang L., Xinjing Z., Chuqing T., Air fuelled zero emission road transportation:A comparative study, Applied Energy, 2011, 88:337-342.
  • - Chen H., Cong TN., Yang W., Tan C., Li Y., Ding Y., Process in electrical energy storage system-a critical rewiew, Prog. Nat. Sci., 2009, 19(3):291-312.
  • - www.efcf.com/reports/E18.pdf, Mazza P., Hammerschlag R., Wind-to-wheel energy assesment, European Fuel Cell Forum, 2009.
  • - www.epa.gov.tw; Taiwan EPA, 2007.
  • - www.yale.edu/globalist, Global 21 ,How Green Are Green Cars?, 2006.
  • - S. R. Pandian, Control performance of an air motor, International Conference on Robotics and Automation, 1999, 518-524, Detroit.
  • - A. L. Hitchcox, Performance insurance for air motors, Hydraulics &Pneumatics, 1995, 48 (10), 63-68.
  • - Automation Air Motors, Air motor flow control system–development project, Automation Air Motors Ltd., 1998, Barnsley, UK.
  • - J. Mahanay, Gerotor air motor: new motion for low-speed output, Machine Design, 1986, 58, (3), 75-77.
  • - G. Morgan, Motors that run on air, Power Transmission Design, 1984, 26 (9), 35-38.
  • - I. N. Reynolds, Modelling and control of an air motor, MSc Dissertation, Department of Automatic Control and Systems Engineering, The University of Sheffield, 2000, UK..
  • - M. H. Saheed,. Neural and genetic modelling control and real time finite simulation of flexible manipulator, PhD Thesis, Department of Automatic Control and System Engineering, The University of Sheffield, 2000, UK..
  • - J. S. Shamma, M. Athans, Potential hazards and possible remedies, IEEE Control Systems Magazine, 1992, 12 (3), 101–107.
  • - R. W. Simnett, E. Anderson, Air motor drives for small pumps, Chemical Engineering, 1983, 90 (25), 73-75.
  • - J. L. Cai, X. L. Yu, G. J. Yuan, Y. M. Shen,. Influence of port timing on work process of air-powered engine, Journal of Zhejiang University, 2004, 38(1), 65-69, Chinese.
  • - C. Q. Zuo, Y. J. Qian, D. An, M. G. Ouyang, F. Y. Yang., Experimental study on air-powered engine. Chinese Journal of Mechanical Engineering, 2007, 43(4), 93-97, Chinese.
  • - M. Manish, P. P. Rathod, S. S. Arvind, Study and development of compressed air engine-single cylinder ‘an experiment set up, International Journal of Advanced Engineering Research and Studies, 2012, 1, 131-132.
  • - M. Andersson, B. Johansson, A. Hultqvist, An air hybrid for high power absorption and discharge, Society Automotive Eng, 2005, 01-2137.
There are 80 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

Mehmet Kunt

Haluk Güneş This is me

Publication Date June 8, 2015
Submission Date June 8, 2015
Published in Issue Year 2015 Volume: 2 Issue: 2

Cite

IEEE M. Kunt and H. Güneş, “İçten Yanmalı Motorlarda Pnömatik Tahrik Sistemlerinin Uygulanabilirliği Üzerine Bir Çalışma”, El-Cezeri Journal of Science and Engineering, vol. 2, no. 2, pp. 41–59, 2015, doi: 10.31202/ecjse.67133.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png