Research Article
BibTex RIS Cite

The contribution of Multi-GNSS Experiment (MGEX) to precise point positioning over Turkey: Consideration of observation time and satellite geometry

Year 2019, Volume: 6 Issue: 3, 642 - 658, 30.09.2019
https://doi.org/10.31202/ecjse.563802

Abstract

In addition to the legacy GPS and GLONASS, new emerging systems, e.g. European Galileo and Chinese BeiDou became operational for positioning, timing and navigation purposes. The International GNSS Service (IGS) has initiated the Multi-GNSS Experiment for adaptation of new emerging systems. An increasing number of satellites of GNSS and their constant modernization allow conducting precise point positioning (PPP) with four constellations, namely GPS, BeiDou, GLONASS and Galileo. In this paper, the performance of quad-constellation PPP over Turkey is investigated using different observation time (24-, 12-, 6-, 3-, and 1-h) and elevation cutoff angles (7°-15°-30°). Ten consecutive days in 2018 (DOY: 324-333) and six IGS-MGEX stations are chosen within and around Turkey to conduct quad-constellation PPP. The results indicate that quad-constellation PPP increases the horizontal and vertical accuracy compared to the GPS only PPP. As the elevation cutoff angle increases, the accuracy improvements are getting higher compared to the unconstrained environment. The improvements in the vertical component are much higher than the horizontal component for most of the stations. The results also reveal that the number of outliers is significantly low for multi-GNSS PPP compared to the GPS only PPP, especially for short observation time.         

Supporting Institution

Necmettin Erbakan University Scientific Research Project

Project Number

191219003

References

  • [1] Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of geophysical research: solid earth, 102(B3), 5005-5017.
  • [2] Shi, C., Lou, Y. D., Zhang, H. P., Zhao, Q., Geng, J., Wang, R., ... & Liu, J. (2010). Seismic deformation of the Mw 8.0 Wenchuan earthquake from high-rate GPS observations. Advances in Space Research, 46(2), 228-235.
  • [3] Geng, J., Jiang, P., & Liu, J. (2017). Integrating GPS with GLONASS for high‐rate seismogeodesy. Geophysical research letters, 44(7), 3139-3146.
  • [4] Bar‐Sever, Y. E., Kroger, P. M., & Borjesson, J. A. (1998). Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. Journal of Geophysical Research: Solid Earth, 103(B3), 5019-5035.
  • [5] Li, X., Ge, M., Zhang, X., Zhang, Y., Guo, B., Wang, R., ... & Wickert, J. (2013). Real‐time high‐rate co‐seismic displacement from ambiguity‐fixed precise point positioning: Application to earthquake early warning. Geophysical Research Letters, 40(2), 295-300.
  • [6] Meng, F., Wang, S., & Zhu, B. (2015). GNSS reliability and positioning accuracy enhancement based on fast satellite selection algorithm and RAIM in multiconstellation. IEEE Aerospace and Electronic Systems Magazine, 30(10), 14-27.
  • [7] Dow, J.; Neilan, R.; Rizos, C. The international GNSS service in a changing landscape of global navigation satellite systems. J. Geod. 2009, 83, 191–198. [CrossRef].
  • [8] Zhao, X., Wang, S., Liu, C., Ou, J., & Yu, X. (2017). Assessing the performance of multi-GNSS precise point positioning in Asia-Pacific region. Survey Review, 49(354), 186-196.
  • [9] Afifi, A., & El-Rabbany, A. (2016). Precise point positioning using triple GNSS constellations in various modes. Sensors, 16(6), 779.
  • [10] Rabbou, M. A. (2015). Multiple Ambiguity Datum Precise Point Positioning Technique Using Multi-Constellation GNSS: GPS, GLONASS, Galileo and BeiDou. Positioning, 6(03), 32.
  • [11] Li, X., Zhang, X., Ren, X., Fritsche, M., Wickert, J., & Schuh, H. (2015). Precise positioning with current multi-constellation global navigation satellite systems: GPS, GLONASS, Galileo and BeiDou. Scientific reports, 5, 8328.
  • [12] Yigit, C. O., Gikas, V., Alcay, S., & Ceylan, A. (2014). Performance evaluation of short to long term GPS, GLONASS and GPS/GLONASS post-processed PPP. Survey Review, 46(336), 155-166.
  • [13] BAHADUR, B., & NOHUTCU, M. Türkiye ve Yakın Çevresi İçin Çoklu-GNSS Kombinasyonlarının PPP Performansına Etkisi.
  • [14] Li, P., Zhang, X., Ren, X., Zuo, X., & Pan, Y. (2016). Generating GPS satellite fractional cycle bias for ambiguity-fixed precise point positioning. GPS solutions, 20(4), 771-782.
  • [15] Rabbou, M.A. and El-Rabbany, A. (2015) Precise Point Positioning Using Multi-Constellation GNSS Observations for Kinematic Applications. Journal of Applied Geodesy, 9, 15-26. http://dx.doi.org/10.1515/jag-2014-0021
  • [16] Zhou, F., Dong, D., Li, P., Li, X., & Schuh, H. (2019). Influence of stochastic modeling for inter-system biases on multi-GNSS undifferenced and uncombined precise point positioning. GPS Solutions, 23(3), 59.
  • [17] Lagler, K., Schindelegger, M., Böhm, J., Krásná, H., & Nilsson, T. (2013). GPT2: Empirical slant delay model for radio space geodetic techniques. Geophysical research letters, 40(6), 1069-1073.
  • [18] Wu, J. T., Wu, S. C., Hajj, G. A., Bertiger, W. I., & Lichten, S. M. (1992, August). Effects of antenna orientation on GPS carrier phase. In Astrodynamics 1991 (pp. 1647-1660).
  • [19] Petit, G.; Luzum, B. IERS Conventions (2010). Bureau International des Poids et Mesures Sevres (France), 2010. Available online: https://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html (accessed on 1 July 2018).
  • [20] Lou, Y., Zheng, F., Gu, S., Wang, C., Guo, H., & Feng, Y. (2016). Multi-GNSS precise point positioning with raw single-frequency and dual-frequency measurement models. Gps Solutions, 20(4), 849-862.
  • [21 ]Zhao, Q., Wang, C., Guo, J., & Liu, X. (2015). Assessment of the Contribution of BeiDou GEO, IGSO, and MEO Satellites to PPP in Asia—Pacific Region. Sensors, 15(12), 29970-29983.

Çoklu-Gnss’in (MGEX) Türkiye Üzerinde Hassas Nokta Konumlandirmasina Katkisi: Gözlem Süresi ve Uydu Geometrisinin Değerlendirilmesi Üzerine Bir Çalışma

Year 2019, Volume: 6 Issue: 3, 642 - 658, 30.09.2019
https://doi.org/10.31202/ecjse.563802

Abstract

Uydu yörünge sistemini tamamlamış GPS ve GLONASS sistemlerine ilave olarak GALILEO ve BeiDou uydu navigasyon sistemleri tam kapasite uydu yörünge sistemine geçebilmek için hızlı bir şekilde güncellenmektedir. Uluslararası GNSS servisi (IGS) gelişen farklı uydu sistemleri için çoklu-GNSS hizmetini (IGS-MGEX) başlatmıştır. Sayısı artmakta olan özellikle Galileo ve BeiDou uydu navigasyon sistemleri kullanılarak dört farklı küresel navigasyon amaçlı hizmet veren GPS, GLONASS, GALILEO ve BeiDou uyduları kullanılarak hassas nokta konumlama (PPP) yapılabilmektedir. Bu çalışmada GPS, GLONASS, GALILEO ve BeiDou uydularından yararlanılarak (GPS, GPS-GLONASS, GPS-GLONASS-GALILEO ve GPS-GLONASS-GALILEO-BeiDou kombinasyonları ile) farklı oturum süreleri (24-12-6-3-1 saat) ve uydu yüksek açıları (7°-15°-30°) için PPP doğruluk performansı Türkiye ve çevresi için analiz edilmiştir. 20-30 Kasım 2018 tarihleri arasında 10 gün ve altı adet IGS-MGEX istasyonu Türkiye içinde ve çevresinde olmak üzere seçilmiştir. Sonuçlar, çoklu GNSS kullanılarak yapılan PPP değerlendirmelerinde yatay ve düşey doğruluğun tek GPS uydusu kullanılarak yapılan PPP değerlendirmesine göre daha yüksek çıktığını göstermektedir. Özellikle uydu yükseklik açısı artıkça tek GPS sistemine göre çoklu-GNSS değerlendirmesindeki doğruluğun çok daha fazla arttığı gözlemlenmektedir. Çoklu-GNSS değerlendirmesindeki düşey doğruluktaki artışın yatay doğruluğa göre çoğu istasyon için daha fazla olduğu görülmektedir. Sonuçlar aynı zamanda kısa oturum sürelerindeki uyuşumsuz ölçülerin çoklu GNSS kullanılarak önemli oranda azaldığını göstermektedir.

Project Number

191219003

References

  • [1] Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of geophysical research: solid earth, 102(B3), 5005-5017.
  • [2] Shi, C., Lou, Y. D., Zhang, H. P., Zhao, Q., Geng, J., Wang, R., ... & Liu, J. (2010). Seismic deformation of the Mw 8.0 Wenchuan earthquake from high-rate GPS observations. Advances in Space Research, 46(2), 228-235.
  • [3] Geng, J., Jiang, P., & Liu, J. (2017). Integrating GPS with GLONASS for high‐rate seismogeodesy. Geophysical research letters, 44(7), 3139-3146.
  • [4] Bar‐Sever, Y. E., Kroger, P. M., & Borjesson, J. A. (1998). Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. Journal of Geophysical Research: Solid Earth, 103(B3), 5019-5035.
  • [5] Li, X., Ge, M., Zhang, X., Zhang, Y., Guo, B., Wang, R., ... & Wickert, J. (2013). Real‐time high‐rate co‐seismic displacement from ambiguity‐fixed precise point positioning: Application to earthquake early warning. Geophysical Research Letters, 40(2), 295-300.
  • [6] Meng, F., Wang, S., & Zhu, B. (2015). GNSS reliability and positioning accuracy enhancement based on fast satellite selection algorithm and RAIM in multiconstellation. IEEE Aerospace and Electronic Systems Magazine, 30(10), 14-27.
  • [7] Dow, J.; Neilan, R.; Rizos, C. The international GNSS service in a changing landscape of global navigation satellite systems. J. Geod. 2009, 83, 191–198. [CrossRef].
  • [8] Zhao, X., Wang, S., Liu, C., Ou, J., & Yu, X. (2017). Assessing the performance of multi-GNSS precise point positioning in Asia-Pacific region. Survey Review, 49(354), 186-196.
  • [9] Afifi, A., & El-Rabbany, A. (2016). Precise point positioning using triple GNSS constellations in various modes. Sensors, 16(6), 779.
  • [10] Rabbou, M. A. (2015). Multiple Ambiguity Datum Precise Point Positioning Technique Using Multi-Constellation GNSS: GPS, GLONASS, Galileo and BeiDou. Positioning, 6(03), 32.
  • [11] Li, X., Zhang, X., Ren, X., Fritsche, M., Wickert, J., & Schuh, H. (2015). Precise positioning with current multi-constellation global navigation satellite systems: GPS, GLONASS, Galileo and BeiDou. Scientific reports, 5, 8328.
  • [12] Yigit, C. O., Gikas, V., Alcay, S., & Ceylan, A. (2014). Performance evaluation of short to long term GPS, GLONASS and GPS/GLONASS post-processed PPP. Survey Review, 46(336), 155-166.
  • [13] BAHADUR, B., & NOHUTCU, M. Türkiye ve Yakın Çevresi İçin Çoklu-GNSS Kombinasyonlarının PPP Performansına Etkisi.
  • [14] Li, P., Zhang, X., Ren, X., Zuo, X., & Pan, Y. (2016). Generating GPS satellite fractional cycle bias for ambiguity-fixed precise point positioning. GPS solutions, 20(4), 771-782.
  • [15] Rabbou, M.A. and El-Rabbany, A. (2015) Precise Point Positioning Using Multi-Constellation GNSS Observations for Kinematic Applications. Journal of Applied Geodesy, 9, 15-26. http://dx.doi.org/10.1515/jag-2014-0021
  • [16] Zhou, F., Dong, D., Li, P., Li, X., & Schuh, H. (2019). Influence of stochastic modeling for inter-system biases on multi-GNSS undifferenced and uncombined precise point positioning. GPS Solutions, 23(3), 59.
  • [17] Lagler, K., Schindelegger, M., Böhm, J., Krásná, H., & Nilsson, T. (2013). GPT2: Empirical slant delay model for radio space geodetic techniques. Geophysical research letters, 40(6), 1069-1073.
  • [18] Wu, J. T., Wu, S. C., Hajj, G. A., Bertiger, W. I., & Lichten, S. M. (1992, August). Effects of antenna orientation on GPS carrier phase. In Astrodynamics 1991 (pp. 1647-1660).
  • [19] Petit, G.; Luzum, B. IERS Conventions (2010). Bureau International des Poids et Mesures Sevres (France), 2010. Available online: https://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html (accessed on 1 July 2018).
  • [20] Lou, Y., Zheng, F., Gu, S., Wang, C., Guo, H., & Feng, Y. (2016). Multi-GNSS precise point positioning with raw single-frequency and dual-frequency measurement models. Gps Solutions, 20(4), 849-862.
  • [21 ]Zhao, Q., Wang, C., Guo, J., & Liu, X. (2015). Assessment of the Contribution of BeiDou GEO, IGSO, and MEO Satellites to PPP in Asia—Pacific Region. Sensors, 15(12), 29970-29983.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Sermet Oğütcü 0000-0002-2680-1856

Project Number 191219003
Publication Date September 30, 2019
Submission Date May 13, 2019
Acceptance Date July 6, 2019
Published in Issue Year 2019 Volume: 6 Issue: 3

Cite

IEEE S. Oğütcü, “The contribution of Multi-GNSS Experiment (MGEX) to precise point positioning over Turkey: Consideration of observation time and satellite geometry”, El-Cezeri Journal of Science and Engineering, vol. 6, no. 3, pp. 642–658, 2019, doi: 10.31202/ecjse.563802.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png