Research Article
BibTex RIS Cite

Modeling of drying characteristics of pomelo (Citrus Maxima) peel

Year 2020, Volume: 7 Issue: 1, 198 - 210, 31.01.2020
https://doi.org/10.31202/ecjse.616497

Abstract

Drying is a technique frequently used for
agricultural food products to preserve them in long time periods. In this work,
drying characteristics of Pomelo fruit (Citrus Maxima) peel for
different drying techniques as microwave drying (MW), forced convection drying
(FC) and freeze drying (FD) were determined. Experiments were conducted for two
slab thicknesses (1 cm and 0.5 cm) in albedo part of the fruit peel. In
addition, activation energy and effective diffusivity values also color properties
were calculated for different drying techniques in both sizes. For FC, MW, and
FD, drying times were determined as 34 min, 24 min, 410 min for thin slabs and
44 min, 30 min and 540 min for thick slabs, respectively. 0.5 cm thick peels
had lower moisture content in a shorter drying period and when the slice
thickness was reduced, the drying rate was increased nearly by 25%. By
mathematical modelling with 11 different thin layer models, the best fitted
kinetics models were found as Logarithmic, Diffusion Approach and Modified
Henderson & Pabis models. At constant thickness, the highest effective
diffusivity values were determined for the MW drying (1.925x10-8 for
thin slab, 7.295x10-8 for thick slab). As for the color
measurements, L*, a*, b* values generally have significant differences from
fresh pomelo peel samples that the closest values to the fresh samples were
obtained from freeze drying experiment.
 

References

  • [1] Yerragunta, V.; Kumaraswamy, T.; Suman, D.; Anusha, V.; Patil, P.; Samhitha, T., A review on Chalcones and its importance, Pharma.Tutor. 2013, 1(2): 54-59.
  • [2] Chavan, B. B.; Gadekar, A. S.; Mehta, P. P.; Vawhal, P. K.; Kolsure, A. K.; Chabukswar, A. R., Synthesis and Medicinal Significance of Chalcones- A Review, Asian J. Biomed. Pharma. Sci., 2016, 6(56): 01-07.
  • [3] Rusu, E.; Oncius, M., Polycondensates of 2´-(Chalcone-4-Oxy)-Ethyl-3,5-Diaminobenzoate with Some Aromatic Dicarboxylic Acids, J.M.S. Part A: Pure and Appl. Chem., 2005, 42: 1025–1036.
  • [4] Kaniappan, K.; Murugavel, S.C., Synthesis and Characterization of Photosensitive Phosphorus Based Polymers Containing ,β-Unsaturated Ketones in the Main Chain, J.M.S. Part A: Pure and Appl. Chem., 2005, 42:1589–1602.
  • [5] Selvam, P.; Babu, K.C.; Penlidis, A.; Nanjundan, Dr. S., Copolymers of 4‐(3′,4′‐ Dimethoxycinnamoyl)phenyl Acrylate and MMA: Synthesis, Characterization, Photocrosslinking Properties, and Monomer Reactivity Ratios, J.M.S. Part A: Pure and Appl. Chem., 2004, A41(7): 791–809.
  • [6] Faghihi, K.; Hajibeygi, M.; Shabanian, M., Photosensitive and Optically Active Poly(amide- imide)s Based on N,N- (pyromellitoyl)-bis-L-amino acid and Dibenzalacetone Moiety in the Main Chain: Synthesis and Characterization, J.M.S. Part A: Pure and Appl. Chem., 2010, 47:144-153.
  • [7] Rehab, A., Studies of Photoreactive Poly(Norbornene Derivatives) Bearing Chalcone Units, J.M.S. Part A: Pure and Appl. Chem., 2003, A40(7): 689-703.
  • [8] Perundevi, T.S.; Jonathan, D.R.; Kothai,S., Synthesis And Characterization of Certain Photocrosslinkable Random Copolyesters With Bischalcone Moiety, Int. J. Adv. Research, 2015, 3(3): 1147-1154.[9] Nanjundan, S.; Selvamalar, C.S.J., Synthesis, Characterization and Photocrosslinking Properties of Poly(1-(4-Methacrylamidophenyl)-1-(4-nitrophenyl)prop-1-en-3-one), J.M.S. Part A: Pure and Appl. Chem., 2006, 43: 1189-1203.
  • [10] Balaji, R.; Nanjundan,S., Studies on Photosensitive Homopolymer and Copolymers Having a Pendant Photocrosslinkable Functional Group, J. Appl. Polym. Sci., 2002, 86: 1023–1037.
  • [11] Tamilvanan, M.; Pandurangan, A.; Subramanian, K.; Reddy, B.S.R., Synthesis and characterization of mono- and di-methoxy substituted acrylate polymers containing photocrosslinkable pendant chalcone moiety, Polym. Adv. Technol. 2008, 19: 1218–1225.
  • [12] Mahy, R.; Bouammali, B.; Oulmidi, A.; Challioui, A.; Derouet, D.; Brosse, J.C., Photosensitive polymers with cinnamate units in the side position of chains: Synthesis, monomer reactivity ratios and photoreactivity, Eur. Polym. J., 2006,42: 2389–2397.
  • [13] Balajia, R.; Grande, D.; Nanjundan, S., Photoresponsive polymers having pendant chlorocinnamoyl moieties: synthesis, reactivity ratios and photochemical properties, Polymer, 2004, 45: 1089–1099.
  • [14] Rehab, A.; Salahuddin, N., (1999): Photocrosslinked polymers based on pendant extended chalcone as photoreactive moieties, Polymer, 1999, 40(9): 2197-2207.
  • [15] Crank, J. (1975). The mathematics of diffusion. Clarendon press, Oxford, UK.
  • [16] Doymaz, I. (2005). Drying characteristics and kinetics of okra. Journal of Food Engineering, 69(3), 275–279.
  • [17] Barbosa-Canovas, G.V., Vega-Mercado, H., (1996). Dehydration Mechanisms. In: Dehydration of Foods, First Edition, Chapman&Hall, New York, USA, 101-155.
  • [18] Dadali, G., Özbek, B. (2008). Microwave heat treatment of leek: drying kinetics and effective moisture diffusivity. International Journal of Food Science and Technology, 43, 1443-1451.
  • [19] Lewis, W.K. (1921). The rate of drying of solid materials. The Journal of Industrial and Engineering Chemistry, 3, 42.
  • [20] Page, G.E. (1949). Factors influencing the maximum rate of air drying shelled corn in thin-layers. MS Thesis, Purdue University, West Lafayette, USA.
  • [21] White, G.M., Bridges, T.C., Loewer, O.J., Ross, I.J. (1978). Seed coat damage in thin layer drying of soybeans as affected by drying conditions. Transactions of the ASAE, 23(1), 224-227.
  • [22] Henderson, S.M., Pabis, S. (1961). Grain drying theory I: Temperature effect on drying coefficient. Journal of Agricultural Engineering Research, 6, 169-174.
  • [23] Karathanos, V.T. (1999). Determination of water content of dried fruits by drying kinetics. Journal Food Engineering, 39, 337–344.
  • [24] Chandra, P.K., Singh, R.P. (1995). Applied Numerical Methods for Food and Agricultural Engineers. CRC Press, Boca Raton, USA, 163-167.
  • [25] Henderson, S.M., (1974). Progress in developing the thin layer drying equation. Transaction of The ASAE, 17, 1167-1172.
  • [26] Sharaf-Eldeen, Y.I., Blaisdell, J.L., Hamdy, M.Y. (1980). A model for ear corn drying. Transactions of the ASAE, 23, 1261-1271.
  • [27] Kaseem, A.S. (1998). Comparative studies on thin layer drying models for wheat. In: 13th International Congress on Agricultural Engineering, Morocco.
  • [28] Verma, L.R., Bucklin, R.A., Ednan, J.B., Wratten, F.T. (1985). Effects of drying air parameters on rice drying models. Transactions of the ASAE, 28, 296–301.
  • [29] Panchariya P.C., Popovic, D., Sharma, A.L. (2002). Thin-layer modeling of black tea drying process. Journal of Food Engineering, 52, 349- 357.
  • [30] Rafiee, S., Sharifi, M., Keyhani, A., Omid, M., Jafari, A., Mohtasebi, S.S., Mobli, H. (2010). Modeling effective moisture diffusivity of orange slice (Thompson Cv.). International Journal of Food Properties, 13(1), 32-40.
  • [31]Tulek, Y. (2011). Drying kinetics of oyster mushroom (Pleurotus ostreatus) in a convective hot air dryer. Journal of Agricultural Science and Technology, 13, 655-664.
  • [32] Ertekin, C., Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer Drying model. Journal of Food Engineering, 63, 349-359.
  • [33] Wang, J., Xi, Y.S. (2005). Drying characteristics and drying quality of carrot using a two-stage microwave process. Journal of Food Engineering, 68, 505-511.
  • [34] Maskan, M. (2000). Microwave/air and microwave finish drying of banana. Journal of Food Engineering, 44, 71-78.
  • [35] Minaei, S., Motevali, A., Najafi, G., Mousavi Seyedi, S.R. (2012). Influence of drying methods on activation energy, effective moisture diffusion and drying rate of pomegranate arils ('Punica granatum'). Australian Journal of Crop Science, 6(4), 584.
  • [36] Motevali, A., Abbaszadeh, A., Minaei, S., Khoshtaghaza, M.H., Ghobadian, B. (2012). Effective Moisture Diffusivity, Activation Energy and Energy Consumption in Thin-layer Drying of Jujube (Zizyphus jujube Mill). Journal of Agricultural Science and Technology, 14, 523-532.
  • [37] Taheri-Garavand, A., Rafiee, S., Keyhani, A. (2011). Study on effective moisture diffusivity, activation energy and mathematical modeling of thin layer drying kinetics of bell pepper. Australian Journal of Crop Science, 5(2), 128.
  • [38] Toğrul, İ. T., Pehlivan, D. (2004). Modelling of thin layer drying kinetics of some fruits under open-air sun drying process. Journal of Food Engineering, 65(3), 413-425.
  • [39] Wang, Z., Sun, J., Chen, F., Liao, X., Hu, X. (2007). Mathematical modelling on thin layer microwave drying of apple pomace with and without hot air predrying. Journal of Food Engineering, 80, 536-544.
  • [40] Darvishi, H. (2012). Energy consumption and mathematical modeling of microwave drying of potato slices. Agricultural Engineering International: CIGR, 14(1),94-102.
  • [41] Garau, M.C., Simal, S., Femenia, A., Rossello, C. (2006). Drying of orange skin: drying kinetics modeling and functional properties. Journal of Food Engineering, 75, 288–295.
  • [42] Kutlu, N., İşci, A. (2016). Effect of Different Drying Methods on Drying Characteristics of Eggplant Slices and Mathematical Modeling of Drying Processes. Academic Food Journal, 14(1), 21-27.
  • [43] Rahman, N.F.A., Shamsudin, R., Ismail, A., Shah, N.N.A.K. (2016). Effects of post-drying methods on pomelo fruit peels. Food Science and Biotechnology, 25(1), 85-90.

Pomelo (Citrus Maxima) Kabuğu Kuruma Karakteristiğinin Modellenmesi

Year 2020, Volume: 7 Issue: 1, 198 - 210, 31.01.2020
https://doi.org/10.31202/ecjse.616497

Abstract

Kurutma,
özellikle tarım ürünlerinin uzun süreli muhafazasında yaygın olarak kullanılan
bir yöntemdir. Bu çalışmada, zorlanmış taşınımla kurutma (FC), dondurularak
kurutma (FD) ve mikrodalga kurutma (MW) tekniklerinin iki farklı ürün
kalınlığında (1 cm ve 0,5 cm) pomelo meyvesi (Citrus Maxima) kabuğunun
kurutma özellikleri üzerine etkileri incelenmiştir. Ayrıca, aktivasyon
enerjisi, etkin difüzivite değerleri ve renk özellikleri de her iki boyutta
farklı kurutma teknikleri için hesaplanmıştır. Kabukların kuruma süresi MC, FC
ve FCD yöntemlerine göre ince örnekler için sırasıyla 24 dakika, 34 dakika, 410
dakika, kalın örnekler için ise sırasıyla 30 dakika, 44 dakika ve 540 dakika
olarak hesaplanmıştır. 0,5 cm kalınlığındaki örnekler daha kısa bir kuruma
süresinde daha düşük nem içeriğine ulaşmış, dilim kalınlığı azaldığında kurutma
hızı yaklaşık %25 artmıştır. 11 farklı ince tabaka modeli ile matematiksel
modellemede en uygun kinetik modeller Logaritmik, Difüzyon Yaklaşım ve Modifiye
Henderson ve Pabis modelleri olarak belirlenmiştir.
 Sabit kalınlıkta en yüksek etkin difüzivite
değerleri MW için belirlenmiştir (ince dilim için 1,925x10-8, kalın
dilim için 7,295     10-8).
Renk ölçümleri sonucunda, L*, a*, b* değerlerinin taze pomelo kabuğu
numunelerinden önemli ölçüde farklı olduğu saptanmış, taze ürüne en yakın renk
değerleri ise dondurarak kurutma yöntemiyle elde edilmiştir.

References

  • [1] Yerragunta, V.; Kumaraswamy, T.; Suman, D.; Anusha, V.; Patil, P.; Samhitha, T., A review on Chalcones and its importance, Pharma.Tutor. 2013, 1(2): 54-59.
  • [2] Chavan, B. B.; Gadekar, A. S.; Mehta, P. P.; Vawhal, P. K.; Kolsure, A. K.; Chabukswar, A. R., Synthesis and Medicinal Significance of Chalcones- A Review, Asian J. Biomed. Pharma. Sci., 2016, 6(56): 01-07.
  • [3] Rusu, E.; Oncius, M., Polycondensates of 2´-(Chalcone-4-Oxy)-Ethyl-3,5-Diaminobenzoate with Some Aromatic Dicarboxylic Acids, J.M.S. Part A: Pure and Appl. Chem., 2005, 42: 1025–1036.
  • [4] Kaniappan, K.; Murugavel, S.C., Synthesis and Characterization of Photosensitive Phosphorus Based Polymers Containing ,β-Unsaturated Ketones in the Main Chain, J.M.S. Part A: Pure and Appl. Chem., 2005, 42:1589–1602.
  • [5] Selvam, P.; Babu, K.C.; Penlidis, A.; Nanjundan, Dr. S., Copolymers of 4‐(3′,4′‐ Dimethoxycinnamoyl)phenyl Acrylate and MMA: Synthesis, Characterization, Photocrosslinking Properties, and Monomer Reactivity Ratios, J.M.S. Part A: Pure and Appl. Chem., 2004, A41(7): 791–809.
  • [6] Faghihi, K.; Hajibeygi, M.; Shabanian, M., Photosensitive and Optically Active Poly(amide- imide)s Based on N,N- (pyromellitoyl)-bis-L-amino acid and Dibenzalacetone Moiety in the Main Chain: Synthesis and Characterization, J.M.S. Part A: Pure and Appl. Chem., 2010, 47:144-153.
  • [7] Rehab, A., Studies of Photoreactive Poly(Norbornene Derivatives) Bearing Chalcone Units, J.M.S. Part A: Pure and Appl. Chem., 2003, A40(7): 689-703.
  • [8] Perundevi, T.S.; Jonathan, D.R.; Kothai,S., Synthesis And Characterization of Certain Photocrosslinkable Random Copolyesters With Bischalcone Moiety, Int. J. Adv. Research, 2015, 3(3): 1147-1154.[9] Nanjundan, S.; Selvamalar, C.S.J., Synthesis, Characterization and Photocrosslinking Properties of Poly(1-(4-Methacrylamidophenyl)-1-(4-nitrophenyl)prop-1-en-3-one), J.M.S. Part A: Pure and Appl. Chem., 2006, 43: 1189-1203.
  • [10] Balaji, R.; Nanjundan,S., Studies on Photosensitive Homopolymer and Copolymers Having a Pendant Photocrosslinkable Functional Group, J. Appl. Polym. Sci., 2002, 86: 1023–1037.
  • [11] Tamilvanan, M.; Pandurangan, A.; Subramanian, K.; Reddy, B.S.R., Synthesis and characterization of mono- and di-methoxy substituted acrylate polymers containing photocrosslinkable pendant chalcone moiety, Polym. Adv. Technol. 2008, 19: 1218–1225.
  • [12] Mahy, R.; Bouammali, B.; Oulmidi, A.; Challioui, A.; Derouet, D.; Brosse, J.C., Photosensitive polymers with cinnamate units in the side position of chains: Synthesis, monomer reactivity ratios and photoreactivity, Eur. Polym. J., 2006,42: 2389–2397.
  • [13] Balajia, R.; Grande, D.; Nanjundan, S., Photoresponsive polymers having pendant chlorocinnamoyl moieties: synthesis, reactivity ratios and photochemical properties, Polymer, 2004, 45: 1089–1099.
  • [14] Rehab, A.; Salahuddin, N., (1999): Photocrosslinked polymers based on pendant extended chalcone as photoreactive moieties, Polymer, 1999, 40(9): 2197-2207.
  • [15] Crank, J. (1975). The mathematics of diffusion. Clarendon press, Oxford, UK.
  • [16] Doymaz, I. (2005). Drying characteristics and kinetics of okra. Journal of Food Engineering, 69(3), 275–279.
  • [17] Barbosa-Canovas, G.V., Vega-Mercado, H., (1996). Dehydration Mechanisms. In: Dehydration of Foods, First Edition, Chapman&Hall, New York, USA, 101-155.
  • [18] Dadali, G., Özbek, B. (2008). Microwave heat treatment of leek: drying kinetics and effective moisture diffusivity. International Journal of Food Science and Technology, 43, 1443-1451.
  • [19] Lewis, W.K. (1921). The rate of drying of solid materials. The Journal of Industrial and Engineering Chemistry, 3, 42.
  • [20] Page, G.E. (1949). Factors influencing the maximum rate of air drying shelled corn in thin-layers. MS Thesis, Purdue University, West Lafayette, USA.
  • [21] White, G.M., Bridges, T.C., Loewer, O.J., Ross, I.J. (1978). Seed coat damage in thin layer drying of soybeans as affected by drying conditions. Transactions of the ASAE, 23(1), 224-227.
  • [22] Henderson, S.M., Pabis, S. (1961). Grain drying theory I: Temperature effect on drying coefficient. Journal of Agricultural Engineering Research, 6, 169-174.
  • [23] Karathanos, V.T. (1999). Determination of water content of dried fruits by drying kinetics. Journal Food Engineering, 39, 337–344.
  • [24] Chandra, P.K., Singh, R.P. (1995). Applied Numerical Methods for Food and Agricultural Engineers. CRC Press, Boca Raton, USA, 163-167.
  • [25] Henderson, S.M., (1974). Progress in developing the thin layer drying equation. Transaction of The ASAE, 17, 1167-1172.
  • [26] Sharaf-Eldeen, Y.I., Blaisdell, J.L., Hamdy, M.Y. (1980). A model for ear corn drying. Transactions of the ASAE, 23, 1261-1271.
  • [27] Kaseem, A.S. (1998). Comparative studies on thin layer drying models for wheat. In: 13th International Congress on Agricultural Engineering, Morocco.
  • [28] Verma, L.R., Bucklin, R.A., Ednan, J.B., Wratten, F.T. (1985). Effects of drying air parameters on rice drying models. Transactions of the ASAE, 28, 296–301.
  • [29] Panchariya P.C., Popovic, D., Sharma, A.L. (2002). Thin-layer modeling of black tea drying process. Journal of Food Engineering, 52, 349- 357.
  • [30] Rafiee, S., Sharifi, M., Keyhani, A., Omid, M., Jafari, A., Mohtasebi, S.S., Mobli, H. (2010). Modeling effective moisture diffusivity of orange slice (Thompson Cv.). International Journal of Food Properties, 13(1), 32-40.
  • [31]Tulek, Y. (2011). Drying kinetics of oyster mushroom (Pleurotus ostreatus) in a convective hot air dryer. Journal of Agricultural Science and Technology, 13, 655-664.
  • [32] Ertekin, C., Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer Drying model. Journal of Food Engineering, 63, 349-359.
  • [33] Wang, J., Xi, Y.S. (2005). Drying characteristics and drying quality of carrot using a two-stage microwave process. Journal of Food Engineering, 68, 505-511.
  • [34] Maskan, M. (2000). Microwave/air and microwave finish drying of banana. Journal of Food Engineering, 44, 71-78.
  • [35] Minaei, S., Motevali, A., Najafi, G., Mousavi Seyedi, S.R. (2012). Influence of drying methods on activation energy, effective moisture diffusion and drying rate of pomegranate arils ('Punica granatum'). Australian Journal of Crop Science, 6(4), 584.
  • [36] Motevali, A., Abbaszadeh, A., Minaei, S., Khoshtaghaza, M.H., Ghobadian, B. (2012). Effective Moisture Diffusivity, Activation Energy and Energy Consumption in Thin-layer Drying of Jujube (Zizyphus jujube Mill). Journal of Agricultural Science and Technology, 14, 523-532.
  • [37] Taheri-Garavand, A., Rafiee, S., Keyhani, A. (2011). Study on effective moisture diffusivity, activation energy and mathematical modeling of thin layer drying kinetics of bell pepper. Australian Journal of Crop Science, 5(2), 128.
  • [38] Toğrul, İ. T., Pehlivan, D. (2004). Modelling of thin layer drying kinetics of some fruits under open-air sun drying process. Journal of Food Engineering, 65(3), 413-425.
  • [39] Wang, Z., Sun, J., Chen, F., Liao, X., Hu, X. (2007). Mathematical modelling on thin layer microwave drying of apple pomace with and without hot air predrying. Journal of Food Engineering, 80, 536-544.
  • [40] Darvishi, H. (2012). Energy consumption and mathematical modeling of microwave drying of potato slices. Agricultural Engineering International: CIGR, 14(1),94-102.
  • [41] Garau, M.C., Simal, S., Femenia, A., Rossello, C. (2006). Drying of orange skin: drying kinetics modeling and functional properties. Journal of Food Engineering, 75, 288–295.
  • [42] Kutlu, N., İşci, A. (2016). Effect of Different Drying Methods on Drying Characteristics of Eggplant Slices and Mathematical Modeling of Drying Processes. Academic Food Journal, 14(1), 21-27.
  • [43] Rahman, N.F.A., Shamsudin, R., Ismail, A., Shah, N.N.A.K. (2016). Effects of post-drying methods on pomelo fruit peels. Food Science and Biotechnology, 25(1), 85-90.
There are 42 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Azim Doğuş Tuncer 0000-0002-8098-6417

Hande Ozge Guler This is me 0000-0002-6386-7432

Hüseyin Usta 0000-0002-7501-6459

Publication Date January 31, 2020
Submission Date September 6, 2019
Acceptance Date December 3, 2019
Published in Issue Year 2020 Volume: 7 Issue: 1

Cite

IEEE A. D. Tuncer, H. O. Guler, and H. Usta, “Modeling of drying characteristics of pomelo (Citrus Maxima) peel”, El-Cezeri Journal of Science and Engineering, vol. 7, no. 1, pp. 198–210, 2020, doi: 10.31202/ecjse.616497.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png