Research Article
BibTex RIS Cite

Green Synthesis of Zinc Oxide Nanoparticles Using Zingiber Officinale Root Extract and Their Applications in Glucose Biosensor

Year 2020, Volume: 7 Issue: 3, 1191 - 1200, 30.09.2020
https://doi.org/10.31202/ecjse.729462

Abstract

Green synthesis of nanoparticles via plant extracts has become an important research field in nanotechnology. In the present study, a novel amperometric glucose biosensor based on the green synthesized zinc oxide (ZnO) nanoparticles by using Zingiber officinale root was fabricated. Glucose oxidase (GOx) was immobilized onto the ZnO-modified carbon paste electrode (CPE) via cross-linking with glutaraldehyde. The prepared biosensor (GOx-ZnO/CPE) exhibited a good electrocatalytic ability to the determination of glucose. The biosensor also showed a low detection limit (14.7 μM), a rapid response (less than 1 second), high sensitivity (15.98 µA mM−1 cm−2), and higher biological affinity (the Michaelis−Menten constant was estimated as 0.99 mM). Moreover, the prepared biosensor exhibited good anti-interference capability in relation to ascorbic acid (AA) and uric acid (UA). These results demonstrated that a simple and a cost effectiveness biosensor was fabricated for the determination of glucose.

References

  • Yang, Z., Z. Ye, B. Zhao, X. Zong, and P. Wang, “A rapid response time and highly sensitive amperometric glucose biosensor based on ZnO nanorod via citric acid-assisted annealing route,” Physica E Low Dimens. Syst. Nanostruct., 2010, 42(6),1830-1833.
  • Galant, A.L., R.C. Kaufman, and J.D. Wilson, “Glucose: Detection and analysis,” Food Chem., 2015, 188,149-160.
  • Dönmez, S., F. Arslan, N. Sarı, N. Kurnaz Yetim, and H. Arslan, “Preparation of carbon paste electrodes including poly(styrene) attached glycine–Pt(IV) for amperometric detection of glucose,” Biosensors Bioelectron., 2014, 54,146-150.
  • Guan, H., D. Gong, Y. Song, B. Han, and N. Zhang, “Biosensor composed of integrated glucose oxidase with liposome microreactors/chitosan nanocomposite for amperometric glucose sensing,” Colloids Surf. Physicochem. Eng. Aspects, 2019, 574,260-267.
  • Nazemi, Z., E. Shams, and M.K. Amini, “Construction of a biointerface for glucose oxidase through diazonium chemistry and electrostatic self-assembly technique,” J. Solid State Electrochem., 2016, 20(2),429-438.
  • Anusha, J.R., C.J. Raj, B.-B. Cho, A.T. Fleming, K.-H. Yu, and B.C. Kim, “Amperometric glucose biosensor based on glucose oxidase immobilized over chitosan nanoparticles from gladius of Uroteuthis duvauceli,” Sensors Actuators B: Chem., 2015, 215,536-543.
  • Suzuki, N., J. Lee, N. Loew, Y. Takahashi-Inose, J. Okuda-Shimazaki, K. Kojima, et al., “Engineered Glucose Oxidase Capable of Quasi-Direct Electron Transfer after a Quick-and-Easy Modification with a Mediator,” Int. J. Mol. Sci., 2020, 21(3),1137.
  • Anusha, J., C.J. Raj, B.-B. Cho, A.T. Fleming, K.-H. Yu, and B.C. Kim, “Amperometric glucose biosensor based on glucose oxidase immobilized over chitosan nanoparticles from gladius of Uroteuthis duvauceli,” Sensors Actuators B: Chem., 2015, 215,536-543.
  • Ahmad, M., C. Pan, Z. Luo, and J. Zhu, “A Single ZnO Nanofiber-Based Highly Sensitive Amperometric Glucose Biosensor,” J. Phys. Chem. C, 2010, 114(20),9308-9313.
  • Aini, B.N., S. Siddiquee, K. Ampon, K.F. Rodrigues, and S. Suryani, “Development of glucose biosensor based on ZnO nanoparticles film and glucose oxidase-immobilized eggshell membrane,” Sens Biosensing Res, 2015, 4,46-56.
  • Fung, C.M., J.S. Lloyd, S. Samavat, D. Deganello, and K.S. Teng, “Facile fabrication of electrochemical ZnO nanowire glucose biosensor using roll to roll printing technique,” Sensors Actuators B: Chem., 2017, 247,807-813.
  • Muthuchamy, N., R. Atchudan, T.N.J.I. Edison, S. Perumal, and Y.R. Lee, “High-performance glucose biosensor based on green synthesized zinc oxide nanoparticle embedded nitrogen-doped carbon sheet,” J. Electroanal. Chem., 2018, 816,195-204.
  • Janaki, A.C., E. Sailatha, and S. Gunasekaran, “Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles,” Spectrochim. Acta A, 2015, 144,17-22.
  • Al Abdullah, K., S. Awad, J. Zaraket, and C. Salame, “Synthesis of ZnO Nanopowders By Using Sol-Gel and Studying Their Structural and Electrical Properties at Different Temperature,” Energy Procedia, 2017, 119,565-570.
  • Kim, J.H., W.C. Choi, H.Y. Kim, Y. Kang, and Y.-K. Park, “Preparation of mono-dispersed mixed metal oxide micro hollow spheres by homogeneous precipitation in a micro precipitator,” Powder Technol., 2005, 153(3),166-175.
  • Kahn, M.L., M. Monge, V. Colliere, F. Senocq, A. Maisonnat, and B. Chaudret, “Size‐and shape‐control of crystalline zinc oxide nanoparticles: a new organometallic synthetic method,” Adv. Funct. Mater., 2005, 15(3),458-468.
  • Dai, Z.R., Z.W. Pan, and Z. Wang, “Novel nanostructures of functional oxides synthesized by thermal evaporation,” Adv. Funct. Mater., 2003, 13(1),9-24.
  • Hasanpoor, M., M. Aliofkhazraei, and H. Delavari, “Microwave-assisted Synthesis of Zinc Oxide Nanoparticles,” Procedia Materials Science, 2015, 11,320-325.
  • Vijayakumar, S., S. Mahadevan, P. Arulmozhi, S. Sriram, and P.K. Praseetha, “Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: Characterization and antimicrobial analysis,” Mater. Sci. Semicond. Process., 2018, 82,39-45.
  • Yuvakkumar, R., J. Suresh, A.J. Nathanael, M. Sundrarajan, and S. Hong, “Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications,” Mater. Sci. Eng. C, 2014, 41,17-27.
  • Anusha, J.R., H.-J. Kim, A.T. Fleming, S.J. Das, K.-H. Yu, B.C. Kim, et al., “Simple fabrication of ZnO/Pt/chitosan electrode for enzymatic glucose biosensor,” Sensors Actuators B: Chem., 2014, 202,827-833.
  • Shamsazar, A., F. Shamsazar, A. Asadi, and S. Rezaei-Zarchi, “A glucose biosensor based on glucose oxidase enzyme and ZnO nanoparticles modified carbon paste electrode,” Int. J. Electrochem. Sci, 2016, 11,9891-9901.
  • Kumar, S.K.N., K. Kavyashree, B.C. Pallavi, S. Kiran, N.S. Kumar, and P. Sharanappa. Fabrication and characterization of enzymatic glucose sensor based on ZnO nanoparticles. in International Conference on Advanced Nanomaterials & Emerging Engineering Technologies. 2013.
  • Safawo, T., B. Sandeep, S. Pola, and A. Tadesse, “Synthesis and characterization of zinc oxide nanoparticles using tuber extract of anchote (Coccinia abyssinica (Lam.) Cong.) for antimicrobial and antioxidant activity assessment,” OpenNano, 2018, 3,56-63.
  • Bala, N., S. Saha, M. Chakraborty, M. Maiti, S. Das, R. Basu, et al., “Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity,” RSC Adv., 2015, 5(7),4993-5003.
  • Chen, L., I. Batjikh, J. Hurh, Y. Han, Y. Huo, H. Ali, et al., “Green synthesis of zinc oxide nanoparticles from root extract of Scutellaria baicalensis and its photocatalytic degradation activity using methylene blue,” Optik, 2019, 184,324-329.
  • Numnuam, A., P. Thavarungkul, and P. Kanatharana, “An amperometric uric acid biosensor based on chitosan-carbon nanotubes electrospun nanofiber on silver nanoparticles,” Anal. Bioanal. Chem., 2014, 406(15),3763-3772.
  • Chen, X., J. Chen, C. Deng, C. Xiao, Y. Yang, Z. Nie, et al., “Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode,” Talanta, 2008, 76(4),763-767.
  • Nenkova, R., D. Ivanova, J. Vladimirova, and T. Godjevargova, “New amperometric glucose biosensor based on cross-linking of glucose oxidase on silica gel/multiwalled carbon nanotubes/polyacrylonitrile nanocomposite film,” Sensors Actuators B: Chem., 2010, 148(1),59-65.
  • Wei, A., X.W. Sun, J. Wang, Y. Lei, X. Cai, C.M. Li, et al., “Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition,” Appl. Phys. Lett., 2006, 89(12),123902.
  • Yang, Z., Z. Ye, B. Zhao, X. Zong, and P. Wang, “A rapid response time and highly sensitive amperometric glucose biosensor based on ZnO nanorod via citric acid-assisted annealing route,” Physica E Low Dimens. Syst. Nanostruct., 2010, 42(6),1830-1833.
  • Zhao, Z.W., X.J. Chen, B.K. Tay, J.S. Chen, Z.J. Han, and K.A. Khor, “A novel amperometric biosensor based on ZnO:Co nanoclusters for biosensing glucose,” Biosensors Bioelectron., 2007, 23(1),135-139.
  • Wang, J., X.W. Sun, A. Wei, Y. Lei, X. Cai, C.M. Li, et al., “Zinc oxide nanocomb biosensor for glucose detection,” Appl. Phys. Lett., 2006, 88(23),233106.

Zencefil (Zingiber Officinale) Kök Ekstresi Kullanılarak Çinko Oksit Nanoparçacıkların Yeşil Sentezi ve Glikoz Biyosensörü Olarak Uygulaması

Year 2020, Volume: 7 Issue: 3, 1191 - 1200, 30.09.2020
https://doi.org/10.31202/ecjse.729462

Abstract

Nanopartiküllerin bitki özleri yoluyla yeşil sentezi nanoteknolojide önemli bir araştırma alanı haline gelmiştir. Bu çalışmada, Zencefil kökü kullanılarak yeşil sentezlenmiş çinko oksit (ZnO) nanopartikülleri aracılığıyla yeni bir amperometrik glikoz biyosensörü üretildi. Glukoz oksidaz (GOx), glutaraldehit ile çapraz bağlanma yoluyla ZnO ile modifiye edilmiş karbon pasta elektrot (CPE) üzerine immobilize edildi. Hazırlanan biyosensör (GOx-ZnO/CPE) glikoz tayini için iyi bir elektrokatalitik özellik gösterdi. Biyosensör, düşük bir tespit limiti (14,7 μM), hızlı cevap süresi (1 saniyeden daha az), yüksek hassasiyet (15,98 µA mM−1cm−2) ve yüksek biyolojik afinite (Michaelis−Menten sabiti 0,99 mM olarak hesaplandı) gösterdi. Ayrıca hazırlanan biyosensör, askorbik asit ve ürik asit gibi girişim yapan maddelere karşı iyi bir seçicilik sergiledi. Bu sonuçlar, glikoz tayini için basit ve uygun maliyetli bir biyosensörün hazırlandığını göstermiştir.

References

  • Yang, Z., Z. Ye, B. Zhao, X. Zong, and P. Wang, “A rapid response time and highly sensitive amperometric glucose biosensor based on ZnO nanorod via citric acid-assisted annealing route,” Physica E Low Dimens. Syst. Nanostruct., 2010, 42(6),1830-1833.
  • Galant, A.L., R.C. Kaufman, and J.D. Wilson, “Glucose: Detection and analysis,” Food Chem., 2015, 188,149-160.
  • Dönmez, S., F. Arslan, N. Sarı, N. Kurnaz Yetim, and H. Arslan, “Preparation of carbon paste electrodes including poly(styrene) attached glycine–Pt(IV) for amperometric detection of glucose,” Biosensors Bioelectron., 2014, 54,146-150.
  • Guan, H., D. Gong, Y. Song, B. Han, and N. Zhang, “Biosensor composed of integrated glucose oxidase with liposome microreactors/chitosan nanocomposite for amperometric glucose sensing,” Colloids Surf. Physicochem. Eng. Aspects, 2019, 574,260-267.
  • Nazemi, Z., E. Shams, and M.K. Amini, “Construction of a biointerface for glucose oxidase through diazonium chemistry and electrostatic self-assembly technique,” J. Solid State Electrochem., 2016, 20(2),429-438.
  • Anusha, J.R., C.J. Raj, B.-B. Cho, A.T. Fleming, K.-H. Yu, and B.C. Kim, “Amperometric glucose biosensor based on glucose oxidase immobilized over chitosan nanoparticles from gladius of Uroteuthis duvauceli,” Sensors Actuators B: Chem., 2015, 215,536-543.
  • Suzuki, N., J. Lee, N. Loew, Y. Takahashi-Inose, J. Okuda-Shimazaki, K. Kojima, et al., “Engineered Glucose Oxidase Capable of Quasi-Direct Electron Transfer after a Quick-and-Easy Modification with a Mediator,” Int. J. Mol. Sci., 2020, 21(3),1137.
  • Anusha, J., C.J. Raj, B.-B. Cho, A.T. Fleming, K.-H. Yu, and B.C. Kim, “Amperometric glucose biosensor based on glucose oxidase immobilized over chitosan nanoparticles from gladius of Uroteuthis duvauceli,” Sensors Actuators B: Chem., 2015, 215,536-543.
  • Ahmad, M., C. Pan, Z. Luo, and J. Zhu, “A Single ZnO Nanofiber-Based Highly Sensitive Amperometric Glucose Biosensor,” J. Phys. Chem. C, 2010, 114(20),9308-9313.
  • Aini, B.N., S. Siddiquee, K. Ampon, K.F. Rodrigues, and S. Suryani, “Development of glucose biosensor based on ZnO nanoparticles film and glucose oxidase-immobilized eggshell membrane,” Sens Biosensing Res, 2015, 4,46-56.
  • Fung, C.M., J.S. Lloyd, S. Samavat, D. Deganello, and K.S. Teng, “Facile fabrication of electrochemical ZnO nanowire glucose biosensor using roll to roll printing technique,” Sensors Actuators B: Chem., 2017, 247,807-813.
  • Muthuchamy, N., R. Atchudan, T.N.J.I. Edison, S. Perumal, and Y.R. Lee, “High-performance glucose biosensor based on green synthesized zinc oxide nanoparticle embedded nitrogen-doped carbon sheet,” J. Electroanal. Chem., 2018, 816,195-204.
  • Janaki, A.C., E. Sailatha, and S. Gunasekaran, “Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles,” Spectrochim. Acta A, 2015, 144,17-22.
  • Al Abdullah, K., S. Awad, J. Zaraket, and C. Salame, “Synthesis of ZnO Nanopowders By Using Sol-Gel and Studying Their Structural and Electrical Properties at Different Temperature,” Energy Procedia, 2017, 119,565-570.
  • Kim, J.H., W.C. Choi, H.Y. Kim, Y. Kang, and Y.-K. Park, “Preparation of mono-dispersed mixed metal oxide micro hollow spheres by homogeneous precipitation in a micro precipitator,” Powder Technol., 2005, 153(3),166-175.
  • Kahn, M.L., M. Monge, V. Colliere, F. Senocq, A. Maisonnat, and B. Chaudret, “Size‐and shape‐control of crystalline zinc oxide nanoparticles: a new organometallic synthetic method,” Adv. Funct. Mater., 2005, 15(3),458-468.
  • Dai, Z.R., Z.W. Pan, and Z. Wang, “Novel nanostructures of functional oxides synthesized by thermal evaporation,” Adv. Funct. Mater., 2003, 13(1),9-24.
  • Hasanpoor, M., M. Aliofkhazraei, and H. Delavari, “Microwave-assisted Synthesis of Zinc Oxide Nanoparticles,” Procedia Materials Science, 2015, 11,320-325.
  • Vijayakumar, S., S. Mahadevan, P. Arulmozhi, S. Sriram, and P.K. Praseetha, “Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: Characterization and antimicrobial analysis,” Mater. Sci. Semicond. Process., 2018, 82,39-45.
  • Yuvakkumar, R., J. Suresh, A.J. Nathanael, M. Sundrarajan, and S. Hong, “Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications,” Mater. Sci. Eng. C, 2014, 41,17-27.
  • Anusha, J.R., H.-J. Kim, A.T. Fleming, S.J. Das, K.-H. Yu, B.C. Kim, et al., “Simple fabrication of ZnO/Pt/chitosan electrode for enzymatic glucose biosensor,” Sensors Actuators B: Chem., 2014, 202,827-833.
  • Shamsazar, A., F. Shamsazar, A. Asadi, and S. Rezaei-Zarchi, “A glucose biosensor based on glucose oxidase enzyme and ZnO nanoparticles modified carbon paste electrode,” Int. J. Electrochem. Sci, 2016, 11,9891-9901.
  • Kumar, S.K.N., K. Kavyashree, B.C. Pallavi, S. Kiran, N.S. Kumar, and P. Sharanappa. Fabrication and characterization of enzymatic glucose sensor based on ZnO nanoparticles. in International Conference on Advanced Nanomaterials & Emerging Engineering Technologies. 2013.
  • Safawo, T., B. Sandeep, S. Pola, and A. Tadesse, “Synthesis and characterization of zinc oxide nanoparticles using tuber extract of anchote (Coccinia abyssinica (Lam.) Cong.) for antimicrobial and antioxidant activity assessment,” OpenNano, 2018, 3,56-63.
  • Bala, N., S. Saha, M. Chakraborty, M. Maiti, S. Das, R. Basu, et al., “Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity,” RSC Adv., 2015, 5(7),4993-5003.
  • Chen, L., I. Batjikh, J. Hurh, Y. Han, Y. Huo, H. Ali, et al., “Green synthesis of zinc oxide nanoparticles from root extract of Scutellaria baicalensis and its photocatalytic degradation activity using methylene blue,” Optik, 2019, 184,324-329.
  • Numnuam, A., P. Thavarungkul, and P. Kanatharana, “An amperometric uric acid biosensor based on chitosan-carbon nanotubes electrospun nanofiber on silver nanoparticles,” Anal. Bioanal. Chem., 2014, 406(15),3763-3772.
  • Chen, X., J. Chen, C. Deng, C. Xiao, Y. Yang, Z. Nie, et al., “Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode,” Talanta, 2008, 76(4),763-767.
  • Nenkova, R., D. Ivanova, J. Vladimirova, and T. Godjevargova, “New amperometric glucose biosensor based on cross-linking of glucose oxidase on silica gel/multiwalled carbon nanotubes/polyacrylonitrile nanocomposite film,” Sensors Actuators B: Chem., 2010, 148(1),59-65.
  • Wei, A., X.W. Sun, J. Wang, Y. Lei, X. Cai, C.M. Li, et al., “Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition,” Appl. Phys. Lett., 2006, 89(12),123902.
  • Yang, Z., Z. Ye, B. Zhao, X. Zong, and P. Wang, “A rapid response time and highly sensitive amperometric glucose biosensor based on ZnO nanorod via citric acid-assisted annealing route,” Physica E Low Dimens. Syst. Nanostruct., 2010, 42(6),1830-1833.
  • Zhao, Z.W., X.J. Chen, B.K. Tay, J.S. Chen, Z.J. Han, and K.A. Khor, “A novel amperometric biosensor based on ZnO:Co nanoclusters for biosensing glucose,” Biosensors Bioelectron., 2007, 23(1),135-139.
  • Wang, J., X.W. Sun, A. Wei, Y. Lei, X. Cai, C.M. Li, et al., “Zinc oxide nanocomb biosensor for glucose detection,” Appl. Phys. Lett., 2006, 88(23),233106.
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Soner Dönmez 0000-0003-0328-6481

Publication Date September 30, 2020
Submission Date April 29, 2020
Acceptance Date August 11, 2020
Published in Issue Year 2020 Volume: 7 Issue: 3

Cite

IEEE S. Dönmez, “Green Synthesis of Zinc Oxide Nanoparticles Using Zingiber Officinale Root Extract and Their Applications in Glucose Biosensor”, El-Cezeri Journal of Science and Engineering, vol. 7, no. 3, pp. 1191–1200, 2020, doi: 10.31202/ecjse.729462.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png