Research Article
BibTex RIS Cite

Hava Taşıtlarının Denizaltı Pasif Akustik Sistemle Uzaktan Algılanma Mesafelerinin İncelenmesi

Year 2021, Volume: 8 Issue: 1, 133 - 141, 31.01.2021
https://doi.org/10.31202/ecjse.780236

Abstract

Dünyamızın yaklaşık 2/3’ünü kaplayan denizler birçok canlı türünü içinde barındığı gibi insan yapımı olan birçok yapıyı da içinde ve üstünde taşımaktadır. Günümüzde sualtı ortamında pasif akustik dinleme sualtı boru hatlarındaki sızıntıların algılanması/konumlandırılması, gemilerin algılanması, deniz canlılarının takip edilmesi gibi birçok uygulamada kullanılmaktadır. Zaten kurulu olan bu sistemlerde algılanabilecek başka bir akustik kaynak ise hava taşıtlarıdır. Denizin üstünde belirli mesafelerde uçan hava taşıtlarının ürettikleri akustik ses seviyeleri ihmal edilemeyecek düzeylerdedir. Ayrıca ses sinyali hava ortamından su ortamına geçerken ses basıncının genliği ikiye katlanmaktadır. Bu durum da hava taşıtlarının suyun altından daha kolay algılanabilmelerine izin vermektedir. Böylece izinsiz olarak başka ülkelerin sınırlarını deniz üstünden ihlal eden hava taşıtları algılanıp konumlandırılabilir. Bu çalışmada bir helikopter (Bell 212) ve üç farklı sabit kanatlı pervaneli uçak (B-N Islander, Twin Otter, P-3 Orion) olmak üzere dört farklı hava taşıtının sualtından algılanma mesafeleri hakkında bir inceleme yapılmıştır. Böylece denizaltı ortamında kullanılabilecek bir hava taşıtı konumlandırma sistemi için bir ön çalışma yapılmıştır.

References

  • [1] Mahmutoglu Y., Turk K., “A passive acoustic based system to locate leak hole in underwater natural gas pipelines”, Digital Signal Processing, 2018, 76: 59-65. URL: https://www.researchgate.net/publication/323209153_A_Passive_Acoustic_Based_System_to_Locate_Leak_Hole_in_Underwater_Natural_Gas_Pipelines
  • [2] Mahmutoglu Y., Turk K., “Positioning of leakages in underwater natural gas pipelines for time-varying multipath environment”, Ocean Engineering, 2020, 207: 107454. URL: https://www.sciencedirect.com/science/article/pii/S0029801820304741?via%3Dihub
  • [3] Oudomphengand B., Nicolas B., Lamotte L., “Localization and contribution of underwater acoustical sources of a moving surface ship”, IEEE Journal of Oceanic Engineering, 2018, 43 (2): 536-546. URL: https://ieeexplore.ieee.org/document/7932861
  • [4] Zhu C., Garcia H., Kaplan A., Schinault M., Handegard N. O., Godo W. H. O. R., Ratilal P., “Detection, localization and classi_cation of multiple mechanized ocean vessels over continental-shelf scale regions with passive ocean acoustic waveguide remote sensing”, Remote Sensing, 2018, 10 (1699): 1-26. URL: https://www.mdpi.com/2072-4292/10/11/1699
  • [5] Lohrasbipeydeh H., Mosayyebpour S., Gulliver T. A., “Single hydrophone passive acoustic sperm whale range and depth estimation”, IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, 754-757, (2012). URL: https://ieeexplore.ieee.org/document/6637749
  • [6] Tiemann C. O., Thode A. M., O'Connell V., Folkert K., “Three-dimensional localization of sperm whales using a single hydrophone”, The Journal of The Acoustical Society of America, 2006, 120 (4): 2355-2365. URL: https://asa.scitation.org/doi/10.1121/1.2335577
  • [7] Brekhovskikh L. M., Lysanov Y. P., “Chapter:3 Reflection of sound from the surface and bottom of the ocean: plane waves”, Fundamentals of Ocean Acoustics, AIP Press, New York, USA, (2002).
  • [8] Saeed N., Celik A., Al-Naffouri A., Alouini M., “Underwater optical wireless communications, networking, and localization: A survey”, AD Hoc networks, 2019, 57 (8): 1-35. URL: https://www.sciencedirect.com/science/article/pii/S1570870518309776
  • [9] Kaushal H., Kaddoum G., “Underwater optical wireless communication”, IEEE Access, 2019, 94: 5894-5913. URL: https://ieeexplore.ieee.org/document/7450595
  • [10] Ferguson B. G., Speechley G. C., “Acoustic Detection and Localization of a Turboprop Aircraft by an Array of Hydrophones Towed Below the Sea Surface”, IEEE Journal of Oceanic Engineering, 2009, 34 (1): 75-82. URL: https://ieeexplore.ieee.org/document/4801582
  • [11] Buckingham M. J., Giddens E. M., Pompa J. B., Simonet F., Hahn T. R., “Sound from a Light Aircraft for Underwater Acoustics Experiments?”, Acta Acustica United With Acustica, 2002, 88: 752-755. URL: https://scripps.ucsd.edu/labs/buckingham/wp-content/uploads/sites/60/2015/04/aircraft2002.pdf
  • [12] Erbe C., Williams R., Parsons M., Parsons S. K., Hendrawan I. G., “Underwater noise from airplanes: An overlooked source of ocean noise”, Marine Pollution Bulletin, 2018, 137: 656-661. URL: https://www.sciencedirect.com/science/article/pii/S0025326X18307768
  • [13] Richardson W. J., Greene C. R., Malme C. I., Thomson D. H., “Marine mammales and noise”, 1, Academic Press, California, USA, (1995).
  • [14] Kapoor R., “Acoustic Sensors for Air and Surface Navigation Applications”, Sensors, 2018, 18: 499. URL: https://www.mdpi.com/1424-8220/18/2/499
  • [15] Stojanovic M., “On the relationship between capacity and distance in an underwater acoustic communication channel”, 1st ACM InternationalWorkshop on Underwater Networks (WUWNet’06), Los Angeles, USA, 1-7, (2006). URL: https://dl.acm.org/doi/10.1145/1161039.1161049
  • [16] Sherman C. H., “Chapter: 4 Transducers as hydrophones”, Transducers and arrays for underwater sound, Springer, New York, USA, (2007).

Investigation of Remote Sensing Distances of Aircrafts With Underwater Passive Acoustic System

Year 2021, Volume: 8 Issue: 1, 133 - 141, 31.01.2021
https://doi.org/10.31202/ecjse.780236

Abstract

The seas, which covers approximately 2/3 of our world, contain many living species as well as many human-made structures. Today, passive acoustic listening in underwater environment is used in many applications such as detection/positioning of leaks in underwater pipelines, detection of ships, monitoring of marine animals. Another acoustic source that can be detected with these already installed systems is aircraft. The acoustic sound levels produced by aircraft flying at certain distances above the sea are at a level that cannot be neglected. In addition, the amplitude of the sound pressure doubles as the sound signal passes from the air environment to the water environment. This allows aircraft to be detected more easily under water. Thus, aircraft that violate the borders of other countries over the sea without permission can be detected and located. In this study, an investigation was made on the detection distances of four different aircraft, a helicopter (Bell 212) and three various fixed wing propeller aircraft (B-N Islander, Twin Otter, P-3 Orion) from underwater. Thus, a preliminary study has been made for an aircraft positioning system that can be used in the underwater environment.

References

  • [1] Mahmutoglu Y., Turk K., “A passive acoustic based system to locate leak hole in underwater natural gas pipelines”, Digital Signal Processing, 2018, 76: 59-65. URL: https://www.researchgate.net/publication/323209153_A_Passive_Acoustic_Based_System_to_Locate_Leak_Hole_in_Underwater_Natural_Gas_Pipelines
  • [2] Mahmutoglu Y., Turk K., “Positioning of leakages in underwater natural gas pipelines for time-varying multipath environment”, Ocean Engineering, 2020, 207: 107454. URL: https://www.sciencedirect.com/science/article/pii/S0029801820304741?via%3Dihub
  • [3] Oudomphengand B., Nicolas B., Lamotte L., “Localization and contribution of underwater acoustical sources of a moving surface ship”, IEEE Journal of Oceanic Engineering, 2018, 43 (2): 536-546. URL: https://ieeexplore.ieee.org/document/7932861
  • [4] Zhu C., Garcia H., Kaplan A., Schinault M., Handegard N. O., Godo W. H. O. R., Ratilal P., “Detection, localization and classi_cation of multiple mechanized ocean vessels over continental-shelf scale regions with passive ocean acoustic waveguide remote sensing”, Remote Sensing, 2018, 10 (1699): 1-26. URL: https://www.mdpi.com/2072-4292/10/11/1699
  • [5] Lohrasbipeydeh H., Mosayyebpour S., Gulliver T. A., “Single hydrophone passive acoustic sperm whale range and depth estimation”, IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, 754-757, (2012). URL: https://ieeexplore.ieee.org/document/6637749
  • [6] Tiemann C. O., Thode A. M., O'Connell V., Folkert K., “Three-dimensional localization of sperm whales using a single hydrophone”, The Journal of The Acoustical Society of America, 2006, 120 (4): 2355-2365. URL: https://asa.scitation.org/doi/10.1121/1.2335577
  • [7] Brekhovskikh L. M., Lysanov Y. P., “Chapter:3 Reflection of sound from the surface and bottom of the ocean: plane waves”, Fundamentals of Ocean Acoustics, AIP Press, New York, USA, (2002).
  • [8] Saeed N., Celik A., Al-Naffouri A., Alouini M., “Underwater optical wireless communications, networking, and localization: A survey”, AD Hoc networks, 2019, 57 (8): 1-35. URL: https://www.sciencedirect.com/science/article/pii/S1570870518309776
  • [9] Kaushal H., Kaddoum G., “Underwater optical wireless communication”, IEEE Access, 2019, 94: 5894-5913. URL: https://ieeexplore.ieee.org/document/7450595
  • [10] Ferguson B. G., Speechley G. C., “Acoustic Detection and Localization of a Turboprop Aircraft by an Array of Hydrophones Towed Below the Sea Surface”, IEEE Journal of Oceanic Engineering, 2009, 34 (1): 75-82. URL: https://ieeexplore.ieee.org/document/4801582
  • [11] Buckingham M. J., Giddens E. M., Pompa J. B., Simonet F., Hahn T. R., “Sound from a Light Aircraft for Underwater Acoustics Experiments?”, Acta Acustica United With Acustica, 2002, 88: 752-755. URL: https://scripps.ucsd.edu/labs/buckingham/wp-content/uploads/sites/60/2015/04/aircraft2002.pdf
  • [12] Erbe C., Williams R., Parsons M., Parsons S. K., Hendrawan I. G., “Underwater noise from airplanes: An overlooked source of ocean noise”, Marine Pollution Bulletin, 2018, 137: 656-661. URL: https://www.sciencedirect.com/science/article/pii/S0025326X18307768
  • [13] Richardson W. J., Greene C. R., Malme C. I., Thomson D. H., “Marine mammales and noise”, 1, Academic Press, California, USA, (1995).
  • [14] Kapoor R., “Acoustic Sensors for Air and Surface Navigation Applications”, Sensors, 2018, 18: 499. URL: https://www.mdpi.com/1424-8220/18/2/499
  • [15] Stojanovic M., “On the relationship between capacity and distance in an underwater acoustic communication channel”, 1st ACM InternationalWorkshop on Underwater Networks (WUWNet’06), Los Angeles, USA, 1-7, (2006). URL: https://dl.acm.org/doi/10.1145/1161039.1161049
  • [16] Sherman C. H., “Chapter: 4 Transducers as hydrophones”, Transducers and arrays for underwater sound, Springer, New York, USA, (2007).
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Yiğit Mahmutoğlu 0000-0003-4409-2587

Publication Date January 31, 2021
Submission Date August 13, 2020
Acceptance Date October 9, 2020
Published in Issue Year 2021 Volume: 8 Issue: 1

Cite

IEEE Y. Mahmutoğlu, “Hava Taşıtlarının Denizaltı Pasif Akustik Sistemle Uzaktan Algılanma Mesafelerinin İncelenmesi”, El-Cezeri Journal of Science and Engineering, vol. 8, no. 1, pp. 133–141, 2021, doi: 10.31202/ecjse.780236.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png