Research Article
BibTex RIS Cite

Dizel Yakıtlı Taşıtlardan Salınan Partikül Maddelerin Mikroyapı ve Kimyasal Karakterizasyonu

Year 2021, Volume: 8 Issue: 1, 287 - 298, 31.01.2021
https://doi.org/10.31202/ecjse.835542

Abstract

Taşıt trafiğinden kaynaklanan egzoz emisyonları, taşıt kullanımı sırasında yakıtların, katkı maddelerinin yanması ve sistemindeki motor parçalarının aşınması nedeniyle havaya salınan parçacıkları ifade eder. Kirliliğin en önemli potansiyel kaynağı taşıt emisyonlarıdır. Dizel yakıtlı araçlar yaygın olarak kullanılmalarından dolayı, ulaştırma sektöründe egzoz gazı emisyonlarını arttırmaktadır. Bu emisyonlar motorlarda motor tipi, yakıt tipi ve yanma süreci gibi farklı şartlarda gaz halinden katılaşarak meydana gelmektedir. Bu motorlarda yanma sırasında yaklaşık 2000 0C sıcaklık meydana gelirken, egzoz hattında bu sıcaklık 1000 0C seviyelerine düşmektedir. Çevreye dahil olduğunda ise gerçek atmosferik sıcaklıkta seyretmektedir. Yüksek sıcaklıktan soğuyarak katılaşan partiküller oldukça farklı yapılar içermektedir. Bu çalışmanın amacı, gerçek atmosfere katılan komplex yapıların mikro yapı ve kimyasal özelliklerini ayrıntılı olarak tanımlamaktır. Çalışmada SEM, EDS, XRD ve FTIR teknikleriyle kullanılarak karakterizasyon yapılmıştır. Çalışma sonunda, dizel partikül kompozisyonunda hidrokarbon, azot oksit, karbon monoksit, organik esaslı mineral ve bileşiklerin farklı formlarda havayı kirletmeye devam ettiği tespit edilmiştir.

Supporting Institution

Karamanoğlu Mehmetbey Üniversitesi

Project Number

16-YL-19 nolu Bilimsel Araştırma Projesi

Thanks

Karamanoğlu Mehmetbey Üniversitesi'ne maddi desteklerinden dolayı teşekkür ederiz.

References

  • Radhakrishnan S., Devarajan Y., Mahalingam A., & Nagappan B., "Emissions analysis on diesel engine fueled with palm oil biodiesel and pentanol blends", Journal of Oil Palm Research, 2017, 29(3): 380-386.
  • de Miranda R. M., de Fatima Andrade M., Fornaro A., Astolfo R., de Andre P. A., & Saldiva, P., "Urban air pollution: a representative survey of PM 2.5 mass concentrations in six Brazilian cities", Air Quality, Atmosphere & Health, 2012, 5(1): 63-77.
  • Guo J., Ge Y., Hao L., Tan J., Li J., & Feng X., "On-road measurement of regulated pollutants from diesel and CNG buses with urea selective catalytic reduction systems", Atmospheric Environment, 2014, 99: 1-9.
  • Reşitoğlu İ. A., Altinişik K., & Keskin A, "The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems", Clean Technologies and Environmental Policy, 2015, 17(1): 15-27.
  • Güney B., Öz A., "Microstructure and chemical analysis of vehicle brake wear particle emissions", Avrupa Bilim ve Teknoloji Dergisi, 2020, 19: 633-642.
  • Bond T. C., Doherty S. J., Fahey D. W., Forster P. M., Berntsen T., DeAngelo B. J., ... & Kinne S., "Bounding the role of black carbon in the climate system: A scientific assessment", Journal of geophysical research: Atmospheres, 2013, 118(11): 5380-5552.
  • Tumolva L., Park J. Y., Kim J. S., Miller A. L., Chow J. C., Watson J. G., & Park K., "Morphological and elemental classification of freshly emitted soot particles and atmospheric ultrafine particles using the TEM/EDS", Aerosol Science and Technology, 2010, 44(3): 202-215.
  • Baumgardner D., Popovicheva O., Allan J., Bernardoni V., Cao J., Cavalli F., ... & Gonzalez C., "Soot reference materials for instrument calibration and intercomparisons: a workshop summary with recommendations", Atmospheric Measurement Techniques, 2012, 5(8): 1869-1887.
  • Wang H., "Formation of nascent soot and other condensed-phase materials in flames", Proceedings of the Combustion institute, 2011, 33(1): 41-67.
  • La Rocca A., Bonatesta F., Fay M. W., & Campanella F., "Characterisation of soot in oil from a gasoline direct injection engine using Transmission Electron Microscopy", Tribology International, 2015, 86: 77-84.
  • Güney B., Öz A., "Microstructure and chemical analysis of NOx and particle emissions of diesel engines", International Journal of Automotive Engineering and Technologies, 2020, 9(2): 105-112.
  • Clague A. D. H., Donnet J. B., Wang T. K., & Peng J. C. M., "A comparison of diesel engine soot with carbon black", Carbon, 1999, 37(10): 1553-1565.
  • Sadezky A., Muckenhuber H., Grothe H., Niessner R., & Pöschl, U., "Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information", Carbon, 2005, 43(8): 1731-1742.
  • Su D. S., Serafino A., Müller J. O., Jentoft R. E., Schlögl R., & Fiorito S. "Cytotoxicity and inflammatory potential of soot particles of low-emission diesel engines", Environmental Science & Technology, 2008, 42(5): 1761-1765.
  • Donaldson K., Tran L., Jimenez L. A., Duffin R., Newby D. E., Mills N., ... & Stone V., "Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure", Particle and Fibre Toxicology, 2005, 2(1): 1-14.
  • Geller M. D., Ntziachristos L., Mamakos A., Samaras Z., Schmitz D. A., Froines J. R., & Sioutas C., "Physicochemical and redox characteristics of particulate matter (PM) emitted from gasoline and diesel passenger cars", Atmospheric Environment, 2006, 40(36): 6988-7004.
  • Bernstein J. A., Alexis N., Barnes C., Bernstein I. L., Nel A., Peden D., ... & Williams P. B., "Health effects of air pollution", Journal of Allergy and Clinical Immunology, 2004, 114(5): 1116-1123.
  • Gehrig R., Hill M., Buchmann B., Imhof D., Weingartner E., & Baltensperger U., "Separate determination of PM10 emission factors of road traffic for tailpipe emissions and emissions from abrasion and resuspension processes", International Journal of Environment and Pollution, 2004, 22(3): 312-325.
  • Martonen T., "Aerosol measurement: principles, techniques, and applications" (Vol. 115), K. Willeke, & P. A. Baron (Eds.), New York: Van Nostrand Reinhold, (1993).
  • Mazzarella G., Ferraraccio F., Prati M. V., Annunziata S., Bianco A., Mezzogiorno A., ... & Cazzola M., "Effects of diesel exhaust particles on human lung epithelial cells: an in vitro study", Respiratory Medicine, 2007, 101(6): 1155-1162.
  • Heinrich J., Topp R., Gehring U., & Thefeld W., "Traffic at residential address, respiratory health, and atopy in adults: the National German Health Survey 1998", Environmental Research, 2005, 98(2): 240-249.
  • Lee K. O., Cole R., Sekar R., Cho, M. Y., Zhu J., Kang J., & Bae, C., "Detailed characterization of morphology and dimensions of diesel particulates via thermophoretic sampling", SAE Technical Paper, 2001, (No. 2001-01-3572).
  • Lee K. O., Cole R., Sekar R., Choi M. Y., Kang J. S., Bae C. S., & Shin H. D., "Morphological investigation of the microstructure, dimensions, and fractal geometry of diesel particulates", Proceedings of the Combustion Institute, 2002, 29(1): 647-653.
  • Prado G., Lahaye J, Haynes B., "Soot Particle Nucleation and Agglomeration" , Lahaye J., Prado G., (Eds.), Soot in combustion systems and its toxic properties, (Vol. 7). Springer Science & Business Media, (2013).
  • Andres R. J., Boden T. A., Bréon F. M., Ciais P., Davis S., Erickson D., ... & Oda T., "A synthesis of carbon dioxide emissions from fossil-fuel combustion", Biogeosciences, 2012, 9:, 1845-1871.
  • Andres R. J., Gregg J. S., Losey L., Marland G., & Boden T. A., "Monthly, global emissions of carbon dioxide from fossil fuel consumption", Tellus B: Chemical and Physical Meteorology, 2011, 63(3): 309-327.
  • Platt S. M., El Haddad I., Zardini A. A., Clairotte M., Astorga C., Wolf R., ... & Drinovec L., "Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber", Atmospheric Chemistry and Physics Discussions , 2012, 12, 28343-28383.
  • Liang X., Zhang S., Wu X., Guo X., Han L., Liu H., ... & Hao J., "Air quality and health impacts from using ethanol blended gasoline fuels in China", Atmospheric Environment, 2020, 228: 117396, 1-16.
  • Neyestani S. E., Walters S., Pfister, G., Kooperman G. J., & Saleh R., "Direct Radiative Effect and Public Health Implications of Aerosol Emissions Associated with Shifting to Gasoline Direct Injection (GDI) Technologies in Light-Duty Vehicles in the United States", Environmental Science & Technology, 2019, 54(2): 687-696.
  • Yang H. H., Dhital N. B., Wang L. C., Hsieh Y. S., Lee K. T., Hsu Y. T., & Huang S. C., "Chemical characterization of fine particulate matter in gasoline and diesel vehicle exhaust", Aerosol and Air Quality Research, 2019, 19(6): 1349-1449.
  • Lin Y. C., Li Y. C., Amesho K. T., Shangdiar S., Chou F. C., & Cheng P. C., "Chemical characterization of PM2. 5 emissions and atmospheric metallic element concentrations in PM2.5 emitted from mobile source gasoline-fueled vehicles", Science of The Total Environment, 2020, 739:139942, 1-9.
  • Ağbulut Ü., Sarıdemir S., & Durucan G., "The impacts of ethanol-gasoline blended fuels on the pollutant emissions and performance of a spark-ignition engine: an empirical study", International Journal of Analytical, Experimental and Finite Element Analysis, 2018, 5(4): 50-59.
  • Ağbulut Ü., Ayyıldız M., & Sarıdemir S., "Prediction of performance, combustion and emission characteristics for a dual fuel diesel engine at varying injection pressures", Energy, 2020, 197: 117257, 1-16.
  • Ağbulut Ü., Sarıdemir S., & Albayrak,S., "Experimental investigation of combustion, performance and emission characteristics of a diesel engine fuelled with diesel–biodiesel–alcohol blends", Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(9): 389.
  • Uyumaz A., Aksoy F., Mutlu İ., Akbulut,F., & Yılmaz E., "The Pyrolytic Fuel Production From Nutshell-Rice Husk Blends and Determination of Engine Performance and Exhaust Emissions in a Direct Injection Diesel Engine", International Journal of Automotive Engineering and Technologies, 2018, 7(4): 134-141.
  • Güney B., & Aladağ A., "Microstructural Characterization of Particulate Matter from Gasoline-Fuelled Vehicle Emissions", Journal of Engineering Research and Reports, 2020, 16(1): 29-39.
  • Güney B., & Küçüksarıyıldız H., "Taşıt Emisyonlarının Mikroyapı Analizi", Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 2019, 19(3): 884-893.
  • Smith N. R., Shaviv N. J., & Svensmark H., "Approximate analytical solutions to the condensation-coagulation equation of aerosols", Aerosol Science and Technology, 2016, 50(6): 578-590.
  • May A. A., Presto A. A., Hennigan C. J., Nguyen N. T., Gordon T. D., & Robinson A. L., "Gas-particle partitioning of primary organic aerosol emissions:(2) Diesel vehicles", Environmental Science & Technology, 2013, 47(15): 8288-8296.
  • Alam M. S., Zeraati-Rezaei S., Xu H., & Harrison R. M., "Characterization of gas and particulate phase organic emissions (C9–C37) from a diesel engine and the effect of abatement devices", Environmental Science & Technology, 2019, 53(19): 11345-11352.
  • Contour J. P., & Mouvier G., "X-ray photoelectron spectroscopy of nitrogen oxides adsorbed on iron oxides", Journal of Catalysis, 1975, 40(3): 342-348.
  • Andersson J., Antonsson M., Eurenius L., Olsson,E., & Skoglundh M., "Deactivation of diesel oxidation catalysts: Vehicle-and synthetic aging correlations", Applied Catalysis B: Environmental, 2007, 72(1-2): 71-81.
  • Braniš M., Řezáčová P., & Domasová M., "The effect of outdoor air and indoor human activity on mass concentrations of PM10, PM2. 5, and PM1 in a classroom", Environmental Research, 2005, 99(2): 143-149.
  • Tiwari J., Tarale P., Sivanesan S., & Bafana A., "Environmental persistence, hazard, and mitigation challenges of nitroaromatic compounds", Environmental Science and Pollution Research, 2019, 26: 28650-28667.

Microstructure and Chemical Analysis of Particulate Matter from Diesel-Fuelled Vehicle Emissions

Year 2021, Volume: 8 Issue: 1, 287 - 298, 31.01.2021
https://doi.org/10.31202/ecjse.835542

Abstract

Exhaust emissions from vehicle traffic refer to the particles released into the air due to the combustion of fuels, additives and the erosion of engine parts in the system during vehicle use. The most important potential source of pollution is vehicle emissions. Diesel-fueled vehicles increase exhaust gas emissions in the transportation sector due to their widespread use. These emissions occur by solidifying from the gaseous state under different conditions such as engine type, fuel type and combustion process in engines. While a temperature of about 2000 0C occurs during the combustion of these engines, this temperature drops to 1000 0C in the exhaust line. When it is included in the environment, it runs at real atmospheric temperature. Particles that solidify by cooling at high temperatures contain quite different structures. The aim of this study is to describe in detail the microstructure and chemical properties of complex structures that participate in the real atmosphere. In the study, characterization was made using SEM, EDS, XRD and FTIR techniques. At the end of the study, it was determined that hydrocarbons, nitrous oxide, carbon monoxide, organic based minerals and compounds in the diesel particle composition continue to pollute the air in different forms.

Project Number

16-YL-19 nolu Bilimsel Araştırma Projesi

References

  • Radhakrishnan S., Devarajan Y., Mahalingam A., & Nagappan B., "Emissions analysis on diesel engine fueled with palm oil biodiesel and pentanol blends", Journal of Oil Palm Research, 2017, 29(3): 380-386.
  • de Miranda R. M., de Fatima Andrade M., Fornaro A., Astolfo R., de Andre P. A., & Saldiva, P., "Urban air pollution: a representative survey of PM 2.5 mass concentrations in six Brazilian cities", Air Quality, Atmosphere & Health, 2012, 5(1): 63-77.
  • Guo J., Ge Y., Hao L., Tan J., Li J., & Feng X., "On-road measurement of regulated pollutants from diesel and CNG buses with urea selective catalytic reduction systems", Atmospheric Environment, 2014, 99: 1-9.
  • Reşitoğlu İ. A., Altinişik K., & Keskin A, "The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems", Clean Technologies and Environmental Policy, 2015, 17(1): 15-27.
  • Güney B., Öz A., "Microstructure and chemical analysis of vehicle brake wear particle emissions", Avrupa Bilim ve Teknoloji Dergisi, 2020, 19: 633-642.
  • Bond T. C., Doherty S. J., Fahey D. W., Forster P. M., Berntsen T., DeAngelo B. J., ... & Kinne S., "Bounding the role of black carbon in the climate system: A scientific assessment", Journal of geophysical research: Atmospheres, 2013, 118(11): 5380-5552.
  • Tumolva L., Park J. Y., Kim J. S., Miller A. L., Chow J. C., Watson J. G., & Park K., "Morphological and elemental classification of freshly emitted soot particles and atmospheric ultrafine particles using the TEM/EDS", Aerosol Science and Technology, 2010, 44(3): 202-215.
  • Baumgardner D., Popovicheva O., Allan J., Bernardoni V., Cao J., Cavalli F., ... & Gonzalez C., "Soot reference materials for instrument calibration and intercomparisons: a workshop summary with recommendations", Atmospheric Measurement Techniques, 2012, 5(8): 1869-1887.
  • Wang H., "Formation of nascent soot and other condensed-phase materials in flames", Proceedings of the Combustion institute, 2011, 33(1): 41-67.
  • La Rocca A., Bonatesta F., Fay M. W., & Campanella F., "Characterisation of soot in oil from a gasoline direct injection engine using Transmission Electron Microscopy", Tribology International, 2015, 86: 77-84.
  • Güney B., Öz A., "Microstructure and chemical analysis of NOx and particle emissions of diesel engines", International Journal of Automotive Engineering and Technologies, 2020, 9(2): 105-112.
  • Clague A. D. H., Donnet J. B., Wang T. K., & Peng J. C. M., "A comparison of diesel engine soot with carbon black", Carbon, 1999, 37(10): 1553-1565.
  • Sadezky A., Muckenhuber H., Grothe H., Niessner R., & Pöschl, U., "Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information", Carbon, 2005, 43(8): 1731-1742.
  • Su D. S., Serafino A., Müller J. O., Jentoft R. E., Schlögl R., & Fiorito S. "Cytotoxicity and inflammatory potential of soot particles of low-emission diesel engines", Environmental Science & Technology, 2008, 42(5): 1761-1765.
  • Donaldson K., Tran L., Jimenez L. A., Duffin R., Newby D. E., Mills N., ... & Stone V., "Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure", Particle and Fibre Toxicology, 2005, 2(1): 1-14.
  • Geller M. D., Ntziachristos L., Mamakos A., Samaras Z., Schmitz D. A., Froines J. R., & Sioutas C., "Physicochemical and redox characteristics of particulate matter (PM) emitted from gasoline and diesel passenger cars", Atmospheric Environment, 2006, 40(36): 6988-7004.
  • Bernstein J. A., Alexis N., Barnes C., Bernstein I. L., Nel A., Peden D., ... & Williams P. B., "Health effects of air pollution", Journal of Allergy and Clinical Immunology, 2004, 114(5): 1116-1123.
  • Gehrig R., Hill M., Buchmann B., Imhof D., Weingartner E., & Baltensperger U., "Separate determination of PM10 emission factors of road traffic for tailpipe emissions and emissions from abrasion and resuspension processes", International Journal of Environment and Pollution, 2004, 22(3): 312-325.
  • Martonen T., "Aerosol measurement: principles, techniques, and applications" (Vol. 115), K. Willeke, & P. A. Baron (Eds.), New York: Van Nostrand Reinhold, (1993).
  • Mazzarella G., Ferraraccio F., Prati M. V., Annunziata S., Bianco A., Mezzogiorno A., ... & Cazzola M., "Effects of diesel exhaust particles on human lung epithelial cells: an in vitro study", Respiratory Medicine, 2007, 101(6): 1155-1162.
  • Heinrich J., Topp R., Gehring U., & Thefeld W., "Traffic at residential address, respiratory health, and atopy in adults: the National German Health Survey 1998", Environmental Research, 2005, 98(2): 240-249.
  • Lee K. O., Cole R., Sekar R., Cho, M. Y., Zhu J., Kang J., & Bae, C., "Detailed characterization of morphology and dimensions of diesel particulates via thermophoretic sampling", SAE Technical Paper, 2001, (No. 2001-01-3572).
  • Lee K. O., Cole R., Sekar R., Choi M. Y., Kang J. S., Bae C. S., & Shin H. D., "Morphological investigation of the microstructure, dimensions, and fractal geometry of diesel particulates", Proceedings of the Combustion Institute, 2002, 29(1): 647-653.
  • Prado G., Lahaye J, Haynes B., "Soot Particle Nucleation and Agglomeration" , Lahaye J., Prado G., (Eds.), Soot in combustion systems and its toxic properties, (Vol. 7). Springer Science & Business Media, (2013).
  • Andres R. J., Boden T. A., Bréon F. M., Ciais P., Davis S., Erickson D., ... & Oda T., "A synthesis of carbon dioxide emissions from fossil-fuel combustion", Biogeosciences, 2012, 9:, 1845-1871.
  • Andres R. J., Gregg J. S., Losey L., Marland G., & Boden T. A., "Monthly, global emissions of carbon dioxide from fossil fuel consumption", Tellus B: Chemical and Physical Meteorology, 2011, 63(3): 309-327.
  • Platt S. M., El Haddad I., Zardini A. A., Clairotte M., Astorga C., Wolf R., ... & Drinovec L., "Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber", Atmospheric Chemistry and Physics Discussions , 2012, 12, 28343-28383.
  • Liang X., Zhang S., Wu X., Guo X., Han L., Liu H., ... & Hao J., "Air quality and health impacts from using ethanol blended gasoline fuels in China", Atmospheric Environment, 2020, 228: 117396, 1-16.
  • Neyestani S. E., Walters S., Pfister, G., Kooperman G. J., & Saleh R., "Direct Radiative Effect and Public Health Implications of Aerosol Emissions Associated with Shifting to Gasoline Direct Injection (GDI) Technologies in Light-Duty Vehicles in the United States", Environmental Science & Technology, 2019, 54(2): 687-696.
  • Yang H. H., Dhital N. B., Wang L. C., Hsieh Y. S., Lee K. T., Hsu Y. T., & Huang S. C., "Chemical characterization of fine particulate matter in gasoline and diesel vehicle exhaust", Aerosol and Air Quality Research, 2019, 19(6): 1349-1449.
  • Lin Y. C., Li Y. C., Amesho K. T., Shangdiar S., Chou F. C., & Cheng P. C., "Chemical characterization of PM2. 5 emissions and atmospheric metallic element concentrations in PM2.5 emitted from mobile source gasoline-fueled vehicles", Science of The Total Environment, 2020, 739:139942, 1-9.
  • Ağbulut Ü., Sarıdemir S., & Durucan G., "The impacts of ethanol-gasoline blended fuels on the pollutant emissions and performance of a spark-ignition engine: an empirical study", International Journal of Analytical, Experimental and Finite Element Analysis, 2018, 5(4): 50-59.
  • Ağbulut Ü., Ayyıldız M., & Sarıdemir S., "Prediction of performance, combustion and emission characteristics for a dual fuel diesel engine at varying injection pressures", Energy, 2020, 197: 117257, 1-16.
  • Ağbulut Ü., Sarıdemir S., & Albayrak,S., "Experimental investigation of combustion, performance and emission characteristics of a diesel engine fuelled with diesel–biodiesel–alcohol blends", Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(9): 389.
  • Uyumaz A., Aksoy F., Mutlu İ., Akbulut,F., & Yılmaz E., "The Pyrolytic Fuel Production From Nutshell-Rice Husk Blends and Determination of Engine Performance and Exhaust Emissions in a Direct Injection Diesel Engine", International Journal of Automotive Engineering and Technologies, 2018, 7(4): 134-141.
  • Güney B., & Aladağ A., "Microstructural Characterization of Particulate Matter from Gasoline-Fuelled Vehicle Emissions", Journal of Engineering Research and Reports, 2020, 16(1): 29-39.
  • Güney B., & Küçüksarıyıldız H., "Taşıt Emisyonlarının Mikroyapı Analizi", Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 2019, 19(3): 884-893.
  • Smith N. R., Shaviv N. J., & Svensmark H., "Approximate analytical solutions to the condensation-coagulation equation of aerosols", Aerosol Science and Technology, 2016, 50(6): 578-590.
  • May A. A., Presto A. A., Hennigan C. J., Nguyen N. T., Gordon T. D., & Robinson A. L., "Gas-particle partitioning of primary organic aerosol emissions:(2) Diesel vehicles", Environmental Science & Technology, 2013, 47(15): 8288-8296.
  • Alam M. S., Zeraati-Rezaei S., Xu H., & Harrison R. M., "Characterization of gas and particulate phase organic emissions (C9–C37) from a diesel engine and the effect of abatement devices", Environmental Science & Technology, 2019, 53(19): 11345-11352.
  • Contour J. P., & Mouvier G., "X-ray photoelectron spectroscopy of nitrogen oxides adsorbed on iron oxides", Journal of Catalysis, 1975, 40(3): 342-348.
  • Andersson J., Antonsson M., Eurenius L., Olsson,E., & Skoglundh M., "Deactivation of diesel oxidation catalysts: Vehicle-and synthetic aging correlations", Applied Catalysis B: Environmental, 2007, 72(1-2): 71-81.
  • Braniš M., Řezáčová P., & Domasová M., "The effect of outdoor air and indoor human activity on mass concentrations of PM10, PM2. 5, and PM1 in a classroom", Environmental Research, 2005, 99(2): 143-149.
  • Tiwari J., Tarale P., Sivanesan S., & Bafana A., "Environmental persistence, hazard, and mitigation challenges of nitroaromatic compounds", Environmental Science and Pollution Research, 2019, 26: 28650-28667.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Bekir Güney 0000-0001-9764-9313

Ali Aladağ This is me 0000-0001-9764-9313

Project Number 16-YL-19 nolu Bilimsel Araştırma Projesi
Publication Date January 31, 2021
Submission Date December 3, 2020
Acceptance Date January 15, 2021
Published in Issue Year 2021 Volume: 8 Issue: 1

Cite

IEEE B. Güney and A. Aladağ, “Dizel Yakıtlı Taşıtlardan Salınan Partikül Maddelerin Mikroyapı ve Kimyasal Karakterizasyonu”, El-Cezeri Journal of Science and Engineering, vol. 8, no. 1, pp. 287–298, 2021, doi: 10.31202/ecjse.835542.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png