Review
BibTex RIS Cite

Eklemeli İmalat Teknolojilerinin Tıbbi Ekipmanların Üretiminde Kullanımı

Year 2021, Volume: 8 Issue: 2, 962 - 980, 31.05.2021
https://doi.org/10.31202/ecjse.902023

Abstract

Eklemeli imalat teknolojisi (Eİ) son yıllarda birçok alanda yaygın kullanılan yeni bir üretim yöntemidir. Teknolojinin çalışma prensibi, katmanları üst üste ekleyerek katman bazlı üretim oluşturmaktır. Malzeme çıkarılmasına dayalı geleneksel üretim yöntemlerinin aksine üst üste katmanlı biriktirme işlemi gerçekleştirmektedir. Bu sayede malzemeden tasarruf sağlayan yöntemin, kalıp gerektirmeden parça üretebilme ve karmaşık şekilli parçalarda tasarım esnekliği gibi avantajları da mevcuttur. Bu avantajları sayesinde havacılık, otomotiv, sağlık, savunma sanayi, uzay araştırmaları gibi birçok endüstride kullanılmakta özellikle son yıllarda sağlık uygulamaları için tercih edilmektedir. Özellikle kişiye özel tasarımların üretilebilmesi ile tıbbi ekipmanların üretiminde kullanımı, sağlık endüstrisi için büyük öneme sahiptir. Eklemeli imalat teknolojisi polimer, metal ve seramik malzemelere uygulanabilmektedir. Özellikle polimer malzemelerin kullanıldığı alanlar oldukça geniştir. Bu çalışmada eklemeli imalat yönteminin polimer malzemeler üzerine uygulama yöntemleri ve polimer esaslı tıbbi ekipmanların üretiminde kullanımına değinilecektir.

References

  • [1]. Thomas D.J., Singh D., “3D Printing in medicine and surgery”, Woodhead, Philadelphia, (2019).
  • [2]. Schubert C., Langeveld M.C., Donoso L.A., “Innovations in 3d printing: a 3d overview from optics to organs”, BR J Ophthalmol, 2014, 98(2): 159-161.
  • [3]. Coykendall J., Cotteleer M., Holdowsky J., Mahto M., “3D opportunity in aerospace and defense:additive manufacturing takes flight”, A Deloitte Serisi, 2014, 1:3-6.
  • [4]. Wong K.V., Hernandez A., “A review of additive manufacturing”, International Scholarly Research Network Mechanical Engineering, 2012, 2012.
  • [5]. Murr L.E., “Frontiers of 3D printing/Additive manufacturing: from human organs to aircraft fabrication”, Journal of Materials Science&Technology. 2014, 32 (10):987-995.
  • [6]. Cotteleer M.J., Joyce J., “3D opporunity-additive manufacturing paths to performance,innovation and growth”, Deloitte Review, 2014, 14:148-159.
  • [7]. Wong K.V., Hernandez A., “A review of additive manufacturing”, International Scholarly Research Network Mechanical Engineering, 2012, 2012.
  • [8]. Vayre B., Vignat F., Villeneuve F., “Designing for additive manufacturing”, 45th CIRP Konferansı, 2012, 2012: 632-637.
  • [9]. Horn T.J., Harrysson O.L.A., “Overview of current additive manufacturing technologies and selected applications”, Science Progress, 2012, 95(3): 255-282.
  • [10]. Kloski L.W., Kloski N., “Getting starting with 3D printing”, MAKERMEDIA, Kanada, (2016).
  • [11]. Horvath J., “Mastering 3D printing”, TECHNOLOGY IN ACTION, California, 2014.
  • [12]. Kandasubramanian B., Prasad A., “Fused Deposition Processing Polycaprolactone of Composites for Biomedical Applıcations”, Polymer-Plastic Technology and Materials , 58(13): 1365-1398, 2019.
  • [13]. Özer G., “Eklemeli üretim teknolojileri üzerine bir derleme”, NÖHÜ Müh. Bilim Dergisi 9(1): 606-621, 2020.
  • [14]. Rybicki F.J., Grant G.T., “3D printing in medicine a practical guide for medical professionals”, Springer, Kanada, (2017).
  • [15]. Narayan R., “Rapid prototyping of biomaterials principles and applications”, Woodhead, U.S.A, (2014).
  • [16]. Squelch A., “3D printing and medical imaging”, Medical Radiation Sciences, 65: 171-172, 2018.
  • [17]. Ventola C.L., “Medical applications for 3D printing:Current and projected uses” , P&T, 39(10): 704-711, 2014.
  • [18]. Aimar A., Palermo A., Innocenti B., “The role of 3d printing in medical applications:a state of the art” , Healthcare Engineering Dergisi, 2019, 2019: 1-10.
  • [19]. Mills D.K., “Future medicine:the impact of 3d printing” , Nanomaterials& Molecular Nanotechnology, 2015, 4(3): 1-3, 2015.
  • [20]. Bhushan J., Grover V., “Additive manufacturing:Current concepts,methods, and applications in oral health care” Switzerland, 2019.
  • [21]. Joshi S.C., Sheikh A., “3D printing in aerospace and its long-term sustainability”, Virtual and Physical Prototyping, 2015, 10(4): 1-11.
  • [22]. Chus C.K., Leong K.F., “3D printing and additive manufacturing:principles and applications” , World Scientific Publishing, Singapore, (2017).
  • [23]. Gao W., Zhang Y., Ramanujan D., Ramani K., Chen Y., Williams C.B., Zavattieri P.D., “The status challenges and future of additive manufacturing in engineering”, Computer-Aided Design, 2015, 69(2015): 65-89.
  • [24]. Redwood B., Schöffer F., Garret B., “The 3D handbook technologies, design and applications”, 3D HUBS, Amsterdam, (2017).
  • [25]. Nizan R.F., Rani A.M.A., Din M.Y., “Manufacturing methods for medical artificial prostheses a review”, Malaysian Fundamental and Applied Sciences, 2017, 13(4-2): 464-469.
  • [26]. Mohamed O.A., “Analytical modelling experimental investigation of product quality and mechanical properties in FDM additive manufacturing”, Deakin University, 2019.
  • [27]. Dizon J.R.C., Espera A., Chen Q., Advincula R.C., “Mechanical Characterization of 3D printed polymers”, Additive Manufacturing, 2017, 20(2018): 44-67.
  • [28]. Cresko J., Shenoy D., Liddell H.P.H, Sabouni R., “Innovating clean energy Technologies in advanced manufacturing”, Quadrennial Technology, 2015.
  • [29]. Deradjat D., Minshall T., “Implementation of rapid manufacturing for mass customisation”, Manufacturing Technology Management, 2016.
  • [30]. Han T., Kundu S., Nag A., Xu Y., “3D printed sensors for biomedical applications: a review”, Sensors, 2019, 19(7): 1706, 2019.
  • [31]. Ng W.L., Lee J.M., Zhou M., Chen Y.W., Lee K.W.A., Yeong W.Y., Shen Y.F., “Vat polymerization based bioprinting process, materials, applications and regulatory challenges”, Biofabrication, 2020.
  • [32]. Murr L.E., “Metallurgy of additive manufacturing: Examples from electron beam melting”, Additive Manufacturing, 2015, 2015(5): 40-53.
  • [33]. Bartolo PJ., “Stereolithography: Materials,proses and applications” , Portugal, 2011.
  • [34]. Ngo T.D., Kashani A., Imbalzano, G., Nguyen K.T.Q., Hui D., “Additive Manufacturing (3d printing): A review of materials, methods, applications and challenges” Composites Part B, 2018, 143: 172-196.
  • [35]. Liu B., Gong X., Chappel W.J., “Applications of layer-by-layer polymer stereolithography for three-dimensional RF components”, IEEE Transactions on Microwave Theory and Techniques”, 2004, 52(11): 2567-2575.
  • [36]. Robles J.A.L.A., Hernandez C.C., Cavazos J.O.F., Siller H.R., Rodriquez C.A., Lopez J.I.M., “Hydrostatic High-Pressure Post-Processing of Specimens Fabricated by DLP, SLA, and FDM: An Alternative for the Sterilization of Polymer-Based Biomedical Devices” Materials, 2018, 11(12): 1-12.
  • [37]. Borello J., Nasser P., Iatridis J., Costa K.D., “3D Printing a Mechanically-Tunable Acrylate Resin on a Commercial DLP-SLA Printer”, Additive manufacturing, 2018, 23: 374-380.
  • [38]. Wang X., Jiang M., Zhou Z., Gou J., Hui D., “3D printing of polymer matrix composites:a review and prospective” , Compos B Eng., 2017, 110: 442-458.
  • [39]. Oropallo W., Piegl L.A., “Ten challenges in 3D printing”, Journal of Engineering with Computers, 2015, 32: 135-148.
  • [40]. Melchels P.W.F., Feijen J., Grijpma D.W., “A review on stereolithography and its applications in biomedical engineering”, Biomaterials, 2010, 31:6121-6130.
  • [41]. Kaza A., Stawicki S.P., Yellapu V., Rembalsky J., Roma N., Delong W.G., “Medical applications of stereolithography: An overview” International Journal of Academic Medicine. 2018, 4: 252-259.
  • [42]. Lim S.H., Nig J.Y., Kang L., “Three-dimensional printing of a microneedle array on personalized curved surfaces for dual-pronged treatment of trigger finger” , Biofabrication, 2017, 9(1): 015010.
  • [43]. Mcconell G., “Fast wavelength multiplexing of a white-light supercontinuum using a digital micromirror device for improved three-dimensional fluorescence microscopy” , Review of Scientific Instruments, 2006, 77(1).
  • [44]. Kandry H., Wadnap S., Xu C., Ahsan F., “Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified-release tablets” , Pharmetaceutical Sciences, 2019, 135: 60-67.
  • [45]. Kruth J.P., Mercelis P., Vaerenbergh J.V., Froyen L., Rombouts M.J., “Binding mechanisms in selective laser sintering and selective laser melting”, Journal of Rapid Prototyp., 2005, 11(1): 26-36.
  • [46]. Eklemeli imalat teknolojilerine giriş/eklemeli imalat teknolojileri. http://eklemeliimalat.info.tr/ (Erişim Tarihi: 22.11.2020).
  • [47]. Yap C.Y., Chua C.K., Dong Z.L., Liu Z.H., Zhang D.Q., Loh L.E., Sing S.L., “Rewiew of selective laser melting:Materials and applications” , AIP Publishing, 2015, 2: 1-20.
  • [48]. Chus C.K., Leong K.F., “3D printing and additive manufacturing:principles and applications” World Scientific Publishing, Singapore, 2017.
  • [49]. Thijs L., Verhaeghe F., Craeghs T., Humbeeck J.V., Kruth J.P., “A study of themicrostructural evolution during selective laser melting of Ti-6Al-4V” , Acta Materialia, 2010, 48: 3303-3312.
  • [50]. Sing S.L., “Selective laser melting of novel titanium- tantalum alloy as orthopaedic biomaterial”, Springer, Singapore, 2019.
  • [51]. Narayan R., “Rapid prototyping of biomaterials principles and applications”, Woodhead, U.S.A, 2014.
  • [52]. Kruth J.P., Mercelis P., Vaerenbergh J.V., Froyen L., Rombouts M.J., “Binding mechanisms in selective laser sintering and selective laser melting”, Rapid Prototyp., 2005, 11(1): 26-36.
  • [53]. Sahini D.K, Ghose J., Jha S.K., Behera A., Mandal A., “Optimization and simulation of additive manufacturing process: Challenges and opportunities – A review”, Additive manufacturing applications for metals and composites , IGI Global, ABD (2020).
  • [54]. Schmid M., “Laser Sintering- with Plastics Technology, Processes, and Materials”, Carl Hanser Verlag, Münih, 2018.
  • [55]. Stansbury J., Idacavage M., “3D Printing with Polymers: Challenges Among Expanding Options and Opportunities” Dent. Mater., 2016, 32: 54-64.
  • [56]. Zhang B., Li Y., Bai Q., “Defect formation mechanisms in selective laser melting: a review”, Chinese Journal of Mechanical Engineering, 2017, 30: 515-527.
  • [57]. Yap C.Y., Chua C.K., Dong Z.L., Liu Z.H., Zhang D.Q., Loh L.E., Sing S.L., "Review of selective laser melting: Materials and applications”, Applied Physic Reviews, 2015, 2.
  • [58]. Redwood B., Schöffer F., Garret B., “The 3D handbook technologies, design and applications “, Amsterdam, 2017.
  • [59]. Chus C.K., Leong K.F., “3D printing and additive manufacturing:principles and applications” , Singapore, 2017.
  • [60]. Thijs L., Verhaeghe F., Craeghs T., Humbeeck J.V., Kruth J.P., “A study of the microstructural evolution during selective laser melting of Ti–6Al–4V” Acta Materialia, 2010, 58: 3303-3312.
  • [61]. Dobrzànski L.A., Danikiewicz A.D.D., Franczak A.A., Dobrzànski L.B., M. Szindler M., Gawel T.G., “Porous Selective Laser Melting Ti and Ti6AL4V Materials for Medical Applications” Zagreb, (2017).
  • [62]. Stansbury J.W., Idacavage M.J., “3D printing with polymers: Challenges among expanding options and opportunities” , Dent Materials, 2016, 32(1): 54-64.
  • [63]. Park S.I., Rosen D.W., Choi S.K., Duty C.E., “Effective Mechanical Properties of Lattice Material Fabricated by Material Extrusion Additive Manufacturing”, Additive Manufacturing. 2014, 1-4 :12-23.
  • [64]. Masood S.H., Wang H., Lovenitti P., Harvey E.C., Rapid Prototyping Journal, 2016, 22: 281-299.
  • [65]. Konta A.A., Pina M.G., Serrano D.R., “Personalised 3d printed medicines: Which techniques and polymers are more successful?”, Bioengineering, 2017, 4:1-16.
  • [66]. Pranzo D., Larizza P., Filippini D., Percoco G., “Extrusion-based 3d printing of microfluidic devices for chemical and biomedical applications: A topical review”, Micromachines, 2018,9(8): 374.
  • [67]. Placone J.K., Engler A.J., “Recent advances in extrusion‐based 3d printing for biomedical applications”, Adv.Healthc Mater., 2018, 7(8): 9-11.
  • [68]. Yap Y.L., Wang C., Sing S.W., Dikshit V., Yeong W.Y., Wei J., “Precision Engineering” 2017, 50: 275-285.
  • [69]. Sireesha M., Lee J., Kiran A.S.K., Babu V.J., Kee B.B.T., Ramakrishna S., A review on additive manufacturing and its way into the oil and gas industry”, RSC Advances. 2018, 8(40): 1-9.
  • [70]. Gibson I., Rosen D.W., Stucker B., “Additive manufacturing technologies: Rapid prototyping to direct digital mamufacturing-second edition “Singapore, (2015).
  • [71]. Sachs E.M., Cima M.J., William P., Barancazio D., Cornie J., “Three- dimensional printing:rapid tooling and prototypes directly from a CAD model” CIRP Annals, 1990, 39(1): 201-204.
  • [72]. Xu X., Meteyer S., Perry N., Zhao Y.F., “Energy consumption model of binder-jetting additive manufacturing processes”, International Journal Production Research. 2014, 53: 7005-7015, 2014.
  • [73]. Gokuldoss P.K. Kolla S., Eckert J., “Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting-selection guidelines”, Materials, 2017,10: 1-12.
  • [74]. Industry Market Research, Market Share, Market Size, Sales, Demand Forecast, Market Leaders, Company Profiles, Industry Trends. https://www.freedoniagroup.com/Lamps.html (Erişim Tarihi 30.11.2020)
  • [75]. Schubert C., Langeveld M.C., Donoso L.A., “Innovations in 3D printing: a 3D overview from optics to organs”, BR J Ophthalmol, 2014: 159-161.
  • [76]. New Wohlers Report says 3D printing industry grew by 17% in 2016. https://gfxspeak.com/2017/04/04/wohlers-printing-industry/ (Erişim Tarihi: 28.11.2020).
  • [77]. Culmone C., Smit G., Breedveld P., “Additive manufacturing of medical instruments: A state-of-the-art review”, Additive Manufacturing, 2019, 27: 461-473.
  • [78]. Devine D.M., “Polymer based additive manufacturing biomedical applications” , Springer, İrlanda, 2019.
  • [79]. Lipson H., “New world of 3-D printing offers "completely new ways of thinking": Q&A with author, engineer, and 3-D printing expert Hod Lipson “, IEE Pulse. 2013, 6: 12-14.
  • [80]. Dodziuk H., “Applications of 3D printing in healthcare”, Kardiochir Torakochirurgia Pol., 2016, 3: 283-293, 2016.
  • [81]. Auricchio F., Marconi S., “3D printing: clinical applications in orthopaedics and traumatology” EOR, 2017, 1: 123-127.
  • [82]. 3D Printing technology for improved hearing. https://www.sonova.com/en/story/innovation/3d-printing-technology-improved-hearing. (Son Erişim Tarihi: 01.12.2020).
  • [83]. Choonara Y.E., Toit L.C., Kumar P., Kondiah P.P.D., Pillay V., “3D-printing and the effect on medical costs: a new era?”, Expert Review of Pharmacoeconomics & Outcomes Research, 2016, 16: 23-32.
  • [84]. Mertz, L., “Dream it, design it, print it in 3-D: what can 3-D printing do for you?”, IEEE Pulse, 2013, 4: 15-21, 2013.
  • [85]. Mannoor M.S., Jiang Z., James T., Kong Y.L., Malatesta K.A., Soboyeja W., Verma N., Gracias D.H., McAlpine M.C., “3D printed bionic ears”, Nano Letters, 2013, 13(6): 2634-2639.
  • [86]. Giannopoulos A.A., Mitsouras D., Yoo S.J., Liu P.P., Chatzizisis Y.S., Rybicki F.J., “Applications of 3D printing in cardiovascular diseases”, Nature Reviews Cardiology, 2016, 13: 701-718.
  • [87]. Saito S., “New horizon of bioabsorbable stent” Catheterization and Cardiovascular Interventions, 2005, 66(4): 595–596.
  • [88]. Lee S.J., Jo H.H., Lim K.S., Lim D., Lee S., Lee J.H., Kim W.D., Jeong M.H., Lim J.Y., Kwon I.K., Jung Y., Park J.K., Park S.A., “Heparin coating on 3D printed poly (l-lactic acid) biodegradable cardiovascular stent via mild surface modification approach for coronary artery implantation”, Chemical Engineering Journal, 2019,378.
  • [89]. Wang X., Jiang M., Zhou Z., Gou J., Hui D., “3D printing of polymer matrix composites: A review and prospective”, Composites Part B: Engineering, 2017, 110: 442–458.
  • [90]. Cabrera M.S., Sanders B., Goor O., Mol A.D., “Computationally designed 3d printed self-expandable polymer stents with biodegradation capacity for minimally invasive heart valve implantation: a proof-of-concept study”, 3D printing and Additive Manufacturing, 2017, 4(1): 19-29.
  • [91]. Jain A., Mathur T., Pandian K.R., Selahi A., “Organ-on-a-chip and 3D printing as preclinical models for medical research and practice”, Precision Medicine for Investigators Practitioners and Providers, Elsevier, ABD (2020).
  • [92]. Culmone C., Smit G., Breedveld P., “Additive manufacturing of medical instruments: A state-of-the-art review”, Additive Manufacturing, 2019, 27: 461-473.
  • [93]. Vaezi M., Yang S., “Extrusion-based additive manufacturing of PEEK for biomedical applications”, Virtual and Physical Prototyping, 2015,10(3): 1-13.
  • [94]. Leiner M.G., Ghita O., Mckay R.M.B.A., Kurtz, M.S., “Additive Manufacturing of Polyaryletherketones”, PEEK Biomaterials Handbook, 2019, 89-103.
  • [95]. Ziolkowska P.S., Labowska M.B., Detyna J., Michalak I., Gruber P., “A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques”, Biocybernetics and Biomedical Engineering, 2020, 40(2): 624-638.
  • [96]. Chen Q., Zhu C., Thouas G.A., “Progress and challenges in biomaterials used for bone tissue engineering: bbioactive glasses and elastomeric composites”, Prog Biomater, 2012, 1(2).
  • [97]. Das S., Hollister S.J., Flanagan C., Adewunmi A., Bark K., Chen C., “Freform fabrication of Nylon-6 tissue engineering scaffolds”, Rapid Prototyping, 2003, 9: 43-49.
  • [98]. Williams J.M., Adewunmi A., Schek R.M., Flanagan C.L., Krebsbach P.H., Feinberg S.E., “Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering” Biomaterials, 2005, 26: 4817-4827.
  • [99]. Sabir M.I., Xu X., Li L., “A review on biodegradable polymeric materials for bone tissue engineering applications”, Materials Science, 2009, 44: 5713-5724.
  • [100]. Mkhabela V.J., Ray S.S., “Poly(ε-caprolactone) nanocomposite scaffolds for tissue engineering: a brief overview”, Nanosci Nanotechnol, 2014, 14: 535-45.
  • [101]. Yeong X.Y., Sudarmadji N., Yu H.Y., Chua C.K., Leong K.F., Venkatraman S.S., Boey Y.C.F., Tan L.P., “Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering” , Acta Biomaterialia, 2010, 6(6): 2028-2034.
  • [102]. Jaidev L.R., Chatterjee K., “Surface functionalization of 3D printed polymer scaffolds to augment stem cell response”, Materials and Design, 2019, 161: 44-54.
  • [103]. Tasnim N., Vega L.D.L., Kumar S.A., Abetseth L., Alonzo M., Amereh M., Joddar B., Willerth S.M., “3D Bioprinting Stem Cell Derived Tissues”, Celular and Molecular Bioengineering, 2018, 11: 219-240.
  • [104]. Kolesky D.B., Truby R.L., Gladman A.S., Busbee T.A., Homan K.A., Lewis J.A., “3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs”, Adv. Mater., 2014, 26: 3124–3130.
  • [105]. Wu J., Xie L., Lin X.Z.Y., Chen Q., “Biomimetic nanofibrous scaffolds for neural tissue engineering and drug development”, Drug Discovery Today, 2017, 9: 1375- 1384.
  • [106]. Yiğitol B., Sarı T., “Küresel salgınlarla mücadele endüstri 4.0 teknolojilerinin rolü”, Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 2020, 41: 53-73.
  • [107]. Advincula R.C., Dizon J.R.C., Chen Q., Niu I., Chung J., Kilpatrick L., Newman R., “Additive manufacturing for COVID-19: devices, materials, prospects, and challenges”, MRS Communications, 2020, 10(3).
  • [108]. Oladapo B.I., İsmail S.O., Afolalu T.D., Olawade D.B., Zahedi M., “Review on 3D printing: Fight against COVID-19”, Materials Chemistry and Physics, 2021, 258:12.

The Use of Additive Manufacturing Technologies in The Production of Medical Equipment

Year 2021, Volume: 8 Issue: 2, 962 - 980, 31.05.2021
https://doi.org/10.31202/ecjse.902023

Abstract

Additive manufacturing (AM) technology is a new production method that has been widely used in many areas in last years. The working principle of the technology is to create layer-based production by adding layers on top of each other. Unlike traditional production methods based on material extraction, it performs overlapping layer accumulation. Thus the method that saves material has the advantages of producing parts without the need for molds and design flexibility in complex shaped parts. Owing to these advantages, it is used in many industries such as aviation, automotive, defense industry, space research and especially preferred for health applications in recent years. It is of great importance for the medical industry especially in the production of personalized designs and its use in the production of medical equipment. AM technology can be applied to polymer, metal and ceramic materials. Especially the areas where polymer materials are used are quite wide. In this study, the application methods of AM method on polymer materials and its use in manufacturing of polymeric medical equipment will be discussed.

References

  • [1]. Thomas D.J., Singh D., “3D Printing in medicine and surgery”, Woodhead, Philadelphia, (2019).
  • [2]. Schubert C., Langeveld M.C., Donoso L.A., “Innovations in 3d printing: a 3d overview from optics to organs”, BR J Ophthalmol, 2014, 98(2): 159-161.
  • [3]. Coykendall J., Cotteleer M., Holdowsky J., Mahto M., “3D opportunity in aerospace and defense:additive manufacturing takes flight”, A Deloitte Serisi, 2014, 1:3-6.
  • [4]. Wong K.V., Hernandez A., “A review of additive manufacturing”, International Scholarly Research Network Mechanical Engineering, 2012, 2012.
  • [5]. Murr L.E., “Frontiers of 3D printing/Additive manufacturing: from human organs to aircraft fabrication”, Journal of Materials Science&Technology. 2014, 32 (10):987-995.
  • [6]. Cotteleer M.J., Joyce J., “3D opporunity-additive manufacturing paths to performance,innovation and growth”, Deloitte Review, 2014, 14:148-159.
  • [7]. Wong K.V., Hernandez A., “A review of additive manufacturing”, International Scholarly Research Network Mechanical Engineering, 2012, 2012.
  • [8]. Vayre B., Vignat F., Villeneuve F., “Designing for additive manufacturing”, 45th CIRP Konferansı, 2012, 2012: 632-637.
  • [9]. Horn T.J., Harrysson O.L.A., “Overview of current additive manufacturing technologies and selected applications”, Science Progress, 2012, 95(3): 255-282.
  • [10]. Kloski L.W., Kloski N., “Getting starting with 3D printing”, MAKERMEDIA, Kanada, (2016).
  • [11]. Horvath J., “Mastering 3D printing”, TECHNOLOGY IN ACTION, California, 2014.
  • [12]. Kandasubramanian B., Prasad A., “Fused Deposition Processing Polycaprolactone of Composites for Biomedical Applıcations”, Polymer-Plastic Technology and Materials , 58(13): 1365-1398, 2019.
  • [13]. Özer G., “Eklemeli üretim teknolojileri üzerine bir derleme”, NÖHÜ Müh. Bilim Dergisi 9(1): 606-621, 2020.
  • [14]. Rybicki F.J., Grant G.T., “3D printing in medicine a practical guide for medical professionals”, Springer, Kanada, (2017).
  • [15]. Narayan R., “Rapid prototyping of biomaterials principles and applications”, Woodhead, U.S.A, (2014).
  • [16]. Squelch A., “3D printing and medical imaging”, Medical Radiation Sciences, 65: 171-172, 2018.
  • [17]. Ventola C.L., “Medical applications for 3D printing:Current and projected uses” , P&T, 39(10): 704-711, 2014.
  • [18]. Aimar A., Palermo A., Innocenti B., “The role of 3d printing in medical applications:a state of the art” , Healthcare Engineering Dergisi, 2019, 2019: 1-10.
  • [19]. Mills D.K., “Future medicine:the impact of 3d printing” , Nanomaterials& Molecular Nanotechnology, 2015, 4(3): 1-3, 2015.
  • [20]. Bhushan J., Grover V., “Additive manufacturing:Current concepts,methods, and applications in oral health care” Switzerland, 2019.
  • [21]. Joshi S.C., Sheikh A., “3D printing in aerospace and its long-term sustainability”, Virtual and Physical Prototyping, 2015, 10(4): 1-11.
  • [22]. Chus C.K., Leong K.F., “3D printing and additive manufacturing:principles and applications” , World Scientific Publishing, Singapore, (2017).
  • [23]. Gao W., Zhang Y., Ramanujan D., Ramani K., Chen Y., Williams C.B., Zavattieri P.D., “The status challenges and future of additive manufacturing in engineering”, Computer-Aided Design, 2015, 69(2015): 65-89.
  • [24]. Redwood B., Schöffer F., Garret B., “The 3D handbook technologies, design and applications”, 3D HUBS, Amsterdam, (2017).
  • [25]. Nizan R.F., Rani A.M.A., Din M.Y., “Manufacturing methods for medical artificial prostheses a review”, Malaysian Fundamental and Applied Sciences, 2017, 13(4-2): 464-469.
  • [26]. Mohamed O.A., “Analytical modelling experimental investigation of product quality and mechanical properties in FDM additive manufacturing”, Deakin University, 2019.
  • [27]. Dizon J.R.C., Espera A., Chen Q., Advincula R.C., “Mechanical Characterization of 3D printed polymers”, Additive Manufacturing, 2017, 20(2018): 44-67.
  • [28]. Cresko J., Shenoy D., Liddell H.P.H, Sabouni R., “Innovating clean energy Technologies in advanced manufacturing”, Quadrennial Technology, 2015.
  • [29]. Deradjat D., Minshall T., “Implementation of rapid manufacturing for mass customisation”, Manufacturing Technology Management, 2016.
  • [30]. Han T., Kundu S., Nag A., Xu Y., “3D printed sensors for biomedical applications: a review”, Sensors, 2019, 19(7): 1706, 2019.
  • [31]. Ng W.L., Lee J.M., Zhou M., Chen Y.W., Lee K.W.A., Yeong W.Y., Shen Y.F., “Vat polymerization based bioprinting process, materials, applications and regulatory challenges”, Biofabrication, 2020.
  • [32]. Murr L.E., “Metallurgy of additive manufacturing: Examples from electron beam melting”, Additive Manufacturing, 2015, 2015(5): 40-53.
  • [33]. Bartolo PJ., “Stereolithography: Materials,proses and applications” , Portugal, 2011.
  • [34]. Ngo T.D., Kashani A., Imbalzano, G., Nguyen K.T.Q., Hui D., “Additive Manufacturing (3d printing): A review of materials, methods, applications and challenges” Composites Part B, 2018, 143: 172-196.
  • [35]. Liu B., Gong X., Chappel W.J., “Applications of layer-by-layer polymer stereolithography for three-dimensional RF components”, IEEE Transactions on Microwave Theory and Techniques”, 2004, 52(11): 2567-2575.
  • [36]. Robles J.A.L.A., Hernandez C.C., Cavazos J.O.F., Siller H.R., Rodriquez C.A., Lopez J.I.M., “Hydrostatic High-Pressure Post-Processing of Specimens Fabricated by DLP, SLA, and FDM: An Alternative for the Sterilization of Polymer-Based Biomedical Devices” Materials, 2018, 11(12): 1-12.
  • [37]. Borello J., Nasser P., Iatridis J., Costa K.D., “3D Printing a Mechanically-Tunable Acrylate Resin on a Commercial DLP-SLA Printer”, Additive manufacturing, 2018, 23: 374-380.
  • [38]. Wang X., Jiang M., Zhou Z., Gou J., Hui D., “3D printing of polymer matrix composites:a review and prospective” , Compos B Eng., 2017, 110: 442-458.
  • [39]. Oropallo W., Piegl L.A., “Ten challenges in 3D printing”, Journal of Engineering with Computers, 2015, 32: 135-148.
  • [40]. Melchels P.W.F., Feijen J., Grijpma D.W., “A review on stereolithography and its applications in biomedical engineering”, Biomaterials, 2010, 31:6121-6130.
  • [41]. Kaza A., Stawicki S.P., Yellapu V., Rembalsky J., Roma N., Delong W.G., “Medical applications of stereolithography: An overview” International Journal of Academic Medicine. 2018, 4: 252-259.
  • [42]. Lim S.H., Nig J.Y., Kang L., “Three-dimensional printing of a microneedle array on personalized curved surfaces for dual-pronged treatment of trigger finger” , Biofabrication, 2017, 9(1): 015010.
  • [43]. Mcconell G., “Fast wavelength multiplexing of a white-light supercontinuum using a digital micromirror device for improved three-dimensional fluorescence microscopy” , Review of Scientific Instruments, 2006, 77(1).
  • [44]. Kandry H., Wadnap S., Xu C., Ahsan F., “Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified-release tablets” , Pharmetaceutical Sciences, 2019, 135: 60-67.
  • [45]. Kruth J.P., Mercelis P., Vaerenbergh J.V., Froyen L., Rombouts M.J., “Binding mechanisms in selective laser sintering and selective laser melting”, Journal of Rapid Prototyp., 2005, 11(1): 26-36.
  • [46]. Eklemeli imalat teknolojilerine giriş/eklemeli imalat teknolojileri. http://eklemeliimalat.info.tr/ (Erişim Tarihi: 22.11.2020).
  • [47]. Yap C.Y., Chua C.K., Dong Z.L., Liu Z.H., Zhang D.Q., Loh L.E., Sing S.L., “Rewiew of selective laser melting:Materials and applications” , AIP Publishing, 2015, 2: 1-20.
  • [48]. Chus C.K., Leong K.F., “3D printing and additive manufacturing:principles and applications” World Scientific Publishing, Singapore, 2017.
  • [49]. Thijs L., Verhaeghe F., Craeghs T., Humbeeck J.V., Kruth J.P., “A study of themicrostructural evolution during selective laser melting of Ti-6Al-4V” , Acta Materialia, 2010, 48: 3303-3312.
  • [50]. Sing S.L., “Selective laser melting of novel titanium- tantalum alloy as orthopaedic biomaterial”, Springer, Singapore, 2019.
  • [51]. Narayan R., “Rapid prototyping of biomaterials principles and applications”, Woodhead, U.S.A, 2014.
  • [52]. Kruth J.P., Mercelis P., Vaerenbergh J.V., Froyen L., Rombouts M.J., “Binding mechanisms in selective laser sintering and selective laser melting”, Rapid Prototyp., 2005, 11(1): 26-36.
  • [53]. Sahini D.K, Ghose J., Jha S.K., Behera A., Mandal A., “Optimization and simulation of additive manufacturing process: Challenges and opportunities – A review”, Additive manufacturing applications for metals and composites , IGI Global, ABD (2020).
  • [54]. Schmid M., “Laser Sintering- with Plastics Technology, Processes, and Materials”, Carl Hanser Verlag, Münih, 2018.
  • [55]. Stansbury J., Idacavage M., “3D Printing with Polymers: Challenges Among Expanding Options and Opportunities” Dent. Mater., 2016, 32: 54-64.
  • [56]. Zhang B., Li Y., Bai Q., “Defect formation mechanisms in selective laser melting: a review”, Chinese Journal of Mechanical Engineering, 2017, 30: 515-527.
  • [57]. Yap C.Y., Chua C.K., Dong Z.L., Liu Z.H., Zhang D.Q., Loh L.E., Sing S.L., "Review of selective laser melting: Materials and applications”, Applied Physic Reviews, 2015, 2.
  • [58]. Redwood B., Schöffer F., Garret B., “The 3D handbook technologies, design and applications “, Amsterdam, 2017.
  • [59]. Chus C.K., Leong K.F., “3D printing and additive manufacturing:principles and applications” , Singapore, 2017.
  • [60]. Thijs L., Verhaeghe F., Craeghs T., Humbeeck J.V., Kruth J.P., “A study of the microstructural evolution during selective laser melting of Ti–6Al–4V” Acta Materialia, 2010, 58: 3303-3312.
  • [61]. Dobrzànski L.A., Danikiewicz A.D.D., Franczak A.A., Dobrzànski L.B., M. Szindler M., Gawel T.G., “Porous Selective Laser Melting Ti and Ti6AL4V Materials for Medical Applications” Zagreb, (2017).
  • [62]. Stansbury J.W., Idacavage M.J., “3D printing with polymers: Challenges among expanding options and opportunities” , Dent Materials, 2016, 32(1): 54-64.
  • [63]. Park S.I., Rosen D.W., Choi S.K., Duty C.E., “Effective Mechanical Properties of Lattice Material Fabricated by Material Extrusion Additive Manufacturing”, Additive Manufacturing. 2014, 1-4 :12-23.
  • [64]. Masood S.H., Wang H., Lovenitti P., Harvey E.C., Rapid Prototyping Journal, 2016, 22: 281-299.
  • [65]. Konta A.A., Pina M.G., Serrano D.R., “Personalised 3d printed medicines: Which techniques and polymers are more successful?”, Bioengineering, 2017, 4:1-16.
  • [66]. Pranzo D., Larizza P., Filippini D., Percoco G., “Extrusion-based 3d printing of microfluidic devices for chemical and biomedical applications: A topical review”, Micromachines, 2018,9(8): 374.
  • [67]. Placone J.K., Engler A.J., “Recent advances in extrusion‐based 3d printing for biomedical applications”, Adv.Healthc Mater., 2018, 7(8): 9-11.
  • [68]. Yap Y.L., Wang C., Sing S.W., Dikshit V., Yeong W.Y., Wei J., “Precision Engineering” 2017, 50: 275-285.
  • [69]. Sireesha M., Lee J., Kiran A.S.K., Babu V.J., Kee B.B.T., Ramakrishna S., A review on additive manufacturing and its way into the oil and gas industry”, RSC Advances. 2018, 8(40): 1-9.
  • [70]. Gibson I., Rosen D.W., Stucker B., “Additive manufacturing technologies: Rapid prototyping to direct digital mamufacturing-second edition “Singapore, (2015).
  • [71]. Sachs E.M., Cima M.J., William P., Barancazio D., Cornie J., “Three- dimensional printing:rapid tooling and prototypes directly from a CAD model” CIRP Annals, 1990, 39(1): 201-204.
  • [72]. Xu X., Meteyer S., Perry N., Zhao Y.F., “Energy consumption model of binder-jetting additive manufacturing processes”, International Journal Production Research. 2014, 53: 7005-7015, 2014.
  • [73]. Gokuldoss P.K. Kolla S., Eckert J., “Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting-selection guidelines”, Materials, 2017,10: 1-12.
  • [74]. Industry Market Research, Market Share, Market Size, Sales, Demand Forecast, Market Leaders, Company Profiles, Industry Trends. https://www.freedoniagroup.com/Lamps.html (Erişim Tarihi 30.11.2020)
  • [75]. Schubert C., Langeveld M.C., Donoso L.A., “Innovations in 3D printing: a 3D overview from optics to organs”, BR J Ophthalmol, 2014: 159-161.
  • [76]. New Wohlers Report says 3D printing industry grew by 17% in 2016. https://gfxspeak.com/2017/04/04/wohlers-printing-industry/ (Erişim Tarihi: 28.11.2020).
  • [77]. Culmone C., Smit G., Breedveld P., “Additive manufacturing of medical instruments: A state-of-the-art review”, Additive Manufacturing, 2019, 27: 461-473.
  • [78]. Devine D.M., “Polymer based additive manufacturing biomedical applications” , Springer, İrlanda, 2019.
  • [79]. Lipson H., “New world of 3-D printing offers "completely new ways of thinking": Q&A with author, engineer, and 3-D printing expert Hod Lipson “, IEE Pulse. 2013, 6: 12-14.
  • [80]. Dodziuk H., “Applications of 3D printing in healthcare”, Kardiochir Torakochirurgia Pol., 2016, 3: 283-293, 2016.
  • [81]. Auricchio F., Marconi S., “3D printing: clinical applications in orthopaedics and traumatology” EOR, 2017, 1: 123-127.
  • [82]. 3D Printing technology for improved hearing. https://www.sonova.com/en/story/innovation/3d-printing-technology-improved-hearing. (Son Erişim Tarihi: 01.12.2020).
  • [83]. Choonara Y.E., Toit L.C., Kumar P., Kondiah P.P.D., Pillay V., “3D-printing and the effect on medical costs: a new era?”, Expert Review of Pharmacoeconomics & Outcomes Research, 2016, 16: 23-32.
  • [84]. Mertz, L., “Dream it, design it, print it in 3-D: what can 3-D printing do for you?”, IEEE Pulse, 2013, 4: 15-21, 2013.
  • [85]. Mannoor M.S., Jiang Z., James T., Kong Y.L., Malatesta K.A., Soboyeja W., Verma N., Gracias D.H., McAlpine M.C., “3D printed bionic ears”, Nano Letters, 2013, 13(6): 2634-2639.
  • [86]. Giannopoulos A.A., Mitsouras D., Yoo S.J., Liu P.P., Chatzizisis Y.S., Rybicki F.J., “Applications of 3D printing in cardiovascular diseases”, Nature Reviews Cardiology, 2016, 13: 701-718.
  • [87]. Saito S., “New horizon of bioabsorbable stent” Catheterization and Cardiovascular Interventions, 2005, 66(4): 595–596.
  • [88]. Lee S.J., Jo H.H., Lim K.S., Lim D., Lee S., Lee J.H., Kim W.D., Jeong M.H., Lim J.Y., Kwon I.K., Jung Y., Park J.K., Park S.A., “Heparin coating on 3D printed poly (l-lactic acid) biodegradable cardiovascular stent via mild surface modification approach for coronary artery implantation”, Chemical Engineering Journal, 2019,378.
  • [89]. Wang X., Jiang M., Zhou Z., Gou J., Hui D., “3D printing of polymer matrix composites: A review and prospective”, Composites Part B: Engineering, 2017, 110: 442–458.
  • [90]. Cabrera M.S., Sanders B., Goor O., Mol A.D., “Computationally designed 3d printed self-expandable polymer stents with biodegradation capacity for minimally invasive heart valve implantation: a proof-of-concept study”, 3D printing and Additive Manufacturing, 2017, 4(1): 19-29.
  • [91]. Jain A., Mathur T., Pandian K.R., Selahi A., “Organ-on-a-chip and 3D printing as preclinical models for medical research and practice”, Precision Medicine for Investigators Practitioners and Providers, Elsevier, ABD (2020).
  • [92]. Culmone C., Smit G., Breedveld P., “Additive manufacturing of medical instruments: A state-of-the-art review”, Additive Manufacturing, 2019, 27: 461-473.
  • [93]. Vaezi M., Yang S., “Extrusion-based additive manufacturing of PEEK for biomedical applications”, Virtual and Physical Prototyping, 2015,10(3): 1-13.
  • [94]. Leiner M.G., Ghita O., Mckay R.M.B.A., Kurtz, M.S., “Additive Manufacturing of Polyaryletherketones”, PEEK Biomaterials Handbook, 2019, 89-103.
  • [95]. Ziolkowska P.S., Labowska M.B., Detyna J., Michalak I., Gruber P., “A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques”, Biocybernetics and Biomedical Engineering, 2020, 40(2): 624-638.
  • [96]. Chen Q., Zhu C., Thouas G.A., “Progress and challenges in biomaterials used for bone tissue engineering: bbioactive glasses and elastomeric composites”, Prog Biomater, 2012, 1(2).
  • [97]. Das S., Hollister S.J., Flanagan C., Adewunmi A., Bark K., Chen C., “Freform fabrication of Nylon-6 tissue engineering scaffolds”, Rapid Prototyping, 2003, 9: 43-49.
  • [98]. Williams J.M., Adewunmi A., Schek R.M., Flanagan C.L., Krebsbach P.H., Feinberg S.E., “Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering” Biomaterials, 2005, 26: 4817-4827.
  • [99]. Sabir M.I., Xu X., Li L., “A review on biodegradable polymeric materials for bone tissue engineering applications”, Materials Science, 2009, 44: 5713-5724.
  • [100]. Mkhabela V.J., Ray S.S., “Poly(ε-caprolactone) nanocomposite scaffolds for tissue engineering: a brief overview”, Nanosci Nanotechnol, 2014, 14: 535-45.
  • [101]. Yeong X.Y., Sudarmadji N., Yu H.Y., Chua C.K., Leong K.F., Venkatraman S.S., Boey Y.C.F., Tan L.P., “Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering” , Acta Biomaterialia, 2010, 6(6): 2028-2034.
  • [102]. Jaidev L.R., Chatterjee K., “Surface functionalization of 3D printed polymer scaffolds to augment stem cell response”, Materials and Design, 2019, 161: 44-54.
  • [103]. Tasnim N., Vega L.D.L., Kumar S.A., Abetseth L., Alonzo M., Amereh M., Joddar B., Willerth S.M., “3D Bioprinting Stem Cell Derived Tissues”, Celular and Molecular Bioengineering, 2018, 11: 219-240.
  • [104]. Kolesky D.B., Truby R.L., Gladman A.S., Busbee T.A., Homan K.A., Lewis J.A., “3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs”, Adv. Mater., 2014, 26: 3124–3130.
  • [105]. Wu J., Xie L., Lin X.Z.Y., Chen Q., “Biomimetic nanofibrous scaffolds for neural tissue engineering and drug development”, Drug Discovery Today, 2017, 9: 1375- 1384.
  • [106]. Yiğitol B., Sarı T., “Küresel salgınlarla mücadele endüstri 4.0 teknolojilerinin rolü”, Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 2020, 41: 53-73.
  • [107]. Advincula R.C., Dizon J.R.C., Chen Q., Niu I., Chung J., Kilpatrick L., Newman R., “Additive manufacturing for COVID-19: devices, materials, prospects, and challenges”, MRS Communications, 2020, 10(3).
  • [108]. Oladapo B.I., İsmail S.O., Afolalu T.D., Olawade D.B., Zahedi M., “Review on 3D printing: Fight against COVID-19”, Materials Chemistry and Physics, 2021, 258:12.
There are 108 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Yahya Bozkurt 0000-0003-1816-5922

Hamit Gülsoy 0000-0001-5366-5741

Elif Karayel 0000-0002-3755-5208

Publication Date May 31, 2021
Submission Date March 23, 2021
Acceptance Date May 11, 2021
Published in Issue Year 2021 Volume: 8 Issue: 2

Cite

IEEE Y. Bozkurt, H. Gülsoy, and E. Karayel, “Eklemeli İmalat Teknolojilerinin Tıbbi Ekipmanların Üretiminde Kullanımı”, El-Cezeri Journal of Science and Engineering, vol. 8, no. 2, pp. 962–980, 2021, doi: 10.31202/ecjse.902023.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png