Research Article
BibTex RIS Cite

2,3-Dialdehit Selüloz/Polilaktik Asit Biyobozunur Blendlerinin Hazırlanması ve Karakterizasyonu

Year 2021, Volume: 8 Issue: 3, 1158 - 1169, 30.09.2021
https://doi.org/10.31202/ecjse.899815

Abstract

Son yıllarda çevreyi korumak için doğal olarak türetilmiş sentetik malzemelere olan talep artmıştır. Selülozik polimerler doğada yenilenebilir, biyolojik olarak parçalanabilir, çevre dostudur ve yüksek mukavemet ve sertliğe sahiptirler. Ayrıca son yıllarda araştırmalar petrol bazlı polimerler yerine polilaktik asit (PLA) kullanımını artırmıştır. Bu çalışmada, biyolojik olarak parçalanabilen dialdehit selüloz (DAC) / polilaktik asit (PLA) karışımları hazırlandı. DAC, mikrokristalin selülozdan peroksit oksidasyonu ile elde edildi. İlk olarak DAC, PLA ile harmanlandı. DAC hidrofilik özelliklere sahip olmasına rağmen, PLA'nın hidrofobik özelliklere sahip olduğu bilinmektedir. Bu nedenle, PLA ve DAC arasındaki uyumluluğu artırmak için polietilen glikol (PEG) eklendi. Harmanlar, kızılötesi spektroskopi ve termal analiz (TGA ve DSC) teknikleriyle karakterize edildi. Ayrıca elde edilen polimer karışımlarının SEM görüntüleri yorumlandı.

References

  • Mülhaupt, R., “Green Polymer Chemistry and Bio-based Plastics: Dreams and Reality”, Macromol. Chem. Phys., 2013, 214, 159-174.
  • Luckachan, G. E., and Pillai, C. K. S., “Biodegradable Polymers-A Review on Recent Trends and Emerging Perspectives”, J. Polym. Environ., 2011, 19, 637-676.
  • Vroman, I., and Tighzert, L., “Biodegradable Polymers”, Materials, 2009, 2, 307-344.
  • Song, J. H., Murphy, R. J., Narayan, R., Davies, G. B. H., “Biodegradable and compostable alternatives to conventional plastics”, Phil. Trans. R. Soc. B., 2009, 364, 2127-2139.
  • Mazumder, M. A., Jafar, Sheardown, H., Al-Ahmed, A., (Eds.) “Functional Polymers” Springer International Publishing, ISBN 978-3-319-95986-3, Cham, Switzerland, 2019.
  • Klemm, D., Heublein, B., Fink, H. P., Bohn, A., “Cellulose: Fascinating Biopolymer and Sustainable Raw Material”, Angew. Chem. Int. Ed., 2005, 44, 3358-3393.
  • Zhong, Y., Godwin, P., Jin, Y., Xio, H., “Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review”, Advanced Industrial and Engineering Polymer Research, 2020, 3, 27-35.
  • Fan, Q. G., Lewis, D. M., Tapley, K. N., “Characterization of Cellulose Aldehyde Using Fourier Transform Infrared Spectroscopy”, Journal of Applied Polymer Science, 2001, Vol. 82, 1195-1202.
  • Tavakolian, M., Jafari, S. M., van de Ven, T. G. M., “A Review on Surface-Functionalized Cellulosic Nanostructures as Biocompatible Antibacterial Materials”, Nano-Micro Lett., 2020, 12, 73.
  • Dang, X., Liu, P., Yang, M., Deng, H., Shan, Z., Zhen, W., “Production and characterization of dialdehyde cellulose through green and sustainable approach”, Cellulose, 2019, 26, 9503-9515.
  • Plappert, S. F., Quraishi, S., Pircher, N., Mikkonen, K. S., Veigel, S., Klinger, K. M., Potthast A., Rosenau, T., and Liebner, F. W., “Transparent, Flexible, and Strong 2,3-Dialdehyde Cellulose Films with High Oxygen Barrier Properties”, Biomacromolecules, 2018, 19, 2969-2978.
  • Ramanjaneyulu, B., Venkatachalapathi, N., Prasanthi, G., “Tensile and Micro Structural Properties Analysis of Biodegradable Polymer Blends”, International Journal of Recent Technology and Engineering (IJRTE), 2019, Vol-8, Issue-2, 1866-1868.
  • Hu, Y., Daoud, W. A., Cheuk, K. K. L., and Lin, C. S. K., “Newly Developed Techniques on Polycondensation, Ring-Opening Polymerization and Polymer Modification: Focus on Poly(Lactic Acid)”, Materials, 2016, 9, 133, 1-14.
  • Somphol, W., Lampang, T. N., Prapainainar, Paweena., Sae-Oui, P., Loykulnant, S., Seubsai, A., Dittanet, P., “Effect of Polyethylene Glycol in Nanocellulose/PLA Composites”, Key Engineering Materials, 2019, 821, 89-95.
  • Rasal, R. M., Janorkar, A. V., Hirt, D. E., “Poly (lactic acid) modification”, Progress in Polymer Science, 2010, 35, 338-356.
  • Claro, P. I. C., Neto, A. R. S., Bibbo, A. C. C., Mattoso, L. H. C., Bastos, M. S. R., Marconcini, J. M., “Biodegradable Blends with Potential Use in Packaging: A Comparison of PLA/Chitosan and PLA/Cellulose Acetate Film”, J. Polym. Environ., 2016, 24, 363-371.
  • Song, R., Murphy, M., Li, C., Ting, K., Soo, C., Zheng, Z., “Current development of biodegradable polymeric materials for biomedical applications”, Drug Design, Development and Therapy, 2018, 12, 3117-3145.
  • Sucuoğlu, H. S., Böğrekçi, I., Demircioğlu, P., Gültekin, A., “The Effect of Three Dimensional Printed Infill Pattern on Structural Strength”, El-Cezerî Journal of Science and Engineering, 2018, 5(3), 785-796.
  • Qu, P., Bai, L., Gao, Y., Wu, G., Zhang, L., “Compatibilizing Effects of Poly (ethylene glycol) on PLA/Cellulose Nanowhiskers Composites”, Materials Science Forum, 2011, Vols. 1866-1869.
  • Xipo, Z., Hu, H., Wang, X., Yu, X., Zhou, W., Shaoxian, P., “Super tough poly(lactic acid) blends: a comprehensive review”, RSC Adv., 2020, 10, 13316-13368.
  • Nair, L. S., Laurencina, C. T., “Biodegradable polymers as biomaterial”, Prog. Polym. Sci., 2007, 32, 762-798.
  • Luckachan, G. E., Pillai, C. K. S., “Biodegradable Polymers-A Review on Recent Trends and Emerging Perspectives”, J. Polym. Environ., 2011, 19, 637-676.
  • Frone, A. N., Berlioz, S., Chailan, J. F., Panaitescu, D. M., Donescu, D., “Cellulose Fiber-Reinforced Polylactic Acid”, Polymer composite, 2011, 976-985.
  • Plappert, S. F., Quraishi, S., Pircher, N., Mikkonen, K. S., Veigel, S., Klinger, K. M., Potthast, A., Rosenau, T., and Liebner, F. W., “Transparent, Flexible, and Strong 2,3-Dialdehyde Cellulose Films with High Oxygen Barrier Properties”, Biomacromolecules, 2018, 19, 2969-2978.
  • Hell, S., Ohkawa, K., Amer, H., Potthast, A., Rosenau, T., “Dialdehyde Cellulose Nanofıbers By Electrospinning As Polyvinyl Alcohol Blends: Manufacture And Product Characterization”, Journal of Wood Chemistry and Technology, 2018, 38, 96-110.
  • Syamani, F. A., Kurniawan, Y. D., and Suryanegara, L., “Oxidized Cellulose Fibers for Reinforment in Poly (Lactic Acid) Based Composite”, Asian J. Chem., 2018, Vol. 30, No. 7.
  • Zhang, J. F., Sun, X., “Mechanical and thermal properties of poly (lactic acid)/starch blends with dioctyl maleate”, Journal of Applied Polymer Science, 2004, Vol. 94, 1697-1704.
  • Dang, X., Liu, P., Yang, M., Deng, H., Shan, Z., Zhen, W., “Production and characterization of dialdehyde cellulose through green and sustainable approach”, Cellulose, 2019, 26, 9503-9515.
  • Hoglund, E., “Production of dialdehyde cellulose and periodate regeneration: towards feasible oxidation processes”, Master Thesis, Karlstad University, Faculty of Health, Science and Technology, Department of Engineering and Chemical Sciences, 2015.
  • Chieng, B. W., Ibrahim, N. A., Yunus, W. M. Z. W., Hussein, M. Z., “Poly(lactic acid)/Poly(ethylene glycol) Polymer Nanocomposites: Effects of Graphene Nanoplatelets”, Polymers, 2014, 6, 93-104.
  • Qu, P., Gao Y., Wu, G., and Zhang, L., “PLA/Cellulose Nanocomposites, BioResources”, 2010, 5(3), 1811-1823.
  • Leja, K., Lewandowicz, G., “Polymers Biodegradation and Biodegradable Polymers–a Review”, Pol. J. of Environ. Stud., 2010, Vol. 19, No. 2, 255-266.
  • Sundararajan, S., Samui, A. B., Kulkarni, P. S., “Shape-stabilized poly(ethylene glycol) (PEG)-cellulose acetate blend preparation with superior PEG loading via microwave-assisted blending”, Solar Energy, 2017, 144, 32-3.
  • Kim, Y. F., Choi, C. N., Kim, Y. D., Lee, K. Y., and Lee, M. S., “Compatibilization of Immiscible Poly(l-lactide) and Low Density Polyethylene Blend”, Fibers and Polymers, 2004, vol.5, no.4, 270-274.
  • Nofar, M., Sacligil, D., Carreau, P. J., Kamal, M. R., Heuzey, M. C., “Poly (lactic acid) blends: Processing, properties and application”, International Journal of Biological Macromolecules, 2019, 125, 307-360.
  • Bualuang, W., Threepopnatkul, P., and Sittattrakul, A., “Mechanical properties and foaming behavior of Poly(lactic acid) blend Polybutylene Succinate”, Materials Science and Engineering, 2020, 965, 012030.
  • Doğu, B., Kaynak, C., “Behavior of polylactide/microcrystalline cellulose biocomposites: effects of filler content and interfacial compatibilization”, Cellulose, 2016, 23, 611-622.

Preparation and Characterization of 2,3-Dialdehyde Cellulose/Polylactic Acid Biodegradable Blends

Year 2021, Volume: 8 Issue: 3, 1158 - 1169, 30.09.2021
https://doi.org/10.31202/ecjse.899815

Abstract

In recent years, the demand for naturally derived synthetic materials to protect the environment has increased. Cellulosic polymers are renewable in nature, biodegradable, eco-friendly, and they possess high strength and stiffness. In addition, in recent years, research has increased the use of polylactic acid (PLA) instead of petroleum-based polymers. In this study, biodegradable dialdehyde cellulose (DAC)/polylactic acid (PLA) blends were prepared. DAC was prepared by peroxide oxidation from microcrystalline cellulose. Firstly, DAC was blended with PLA. Although DAC has hydrophilic properties, PLA is known to have hydrophobic properties. Therefore, polyethylene glycol (PEG) was added to increase compatibility between PLA and DAC. The blends were characterized by infrared spectroscopy and thermal analysis (TGA and DSC) techniques. Besides, SEM images of the polymer blends obtained were interpreted.

References

  • Mülhaupt, R., “Green Polymer Chemistry and Bio-based Plastics: Dreams and Reality”, Macromol. Chem. Phys., 2013, 214, 159-174.
  • Luckachan, G. E., and Pillai, C. K. S., “Biodegradable Polymers-A Review on Recent Trends and Emerging Perspectives”, J. Polym. Environ., 2011, 19, 637-676.
  • Vroman, I., and Tighzert, L., “Biodegradable Polymers”, Materials, 2009, 2, 307-344.
  • Song, J. H., Murphy, R. J., Narayan, R., Davies, G. B. H., “Biodegradable and compostable alternatives to conventional plastics”, Phil. Trans. R. Soc. B., 2009, 364, 2127-2139.
  • Mazumder, M. A., Jafar, Sheardown, H., Al-Ahmed, A., (Eds.) “Functional Polymers” Springer International Publishing, ISBN 978-3-319-95986-3, Cham, Switzerland, 2019.
  • Klemm, D., Heublein, B., Fink, H. P., Bohn, A., “Cellulose: Fascinating Biopolymer and Sustainable Raw Material”, Angew. Chem. Int. Ed., 2005, 44, 3358-3393.
  • Zhong, Y., Godwin, P., Jin, Y., Xio, H., “Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review”, Advanced Industrial and Engineering Polymer Research, 2020, 3, 27-35.
  • Fan, Q. G., Lewis, D. M., Tapley, K. N., “Characterization of Cellulose Aldehyde Using Fourier Transform Infrared Spectroscopy”, Journal of Applied Polymer Science, 2001, Vol. 82, 1195-1202.
  • Tavakolian, M., Jafari, S. M., van de Ven, T. G. M., “A Review on Surface-Functionalized Cellulosic Nanostructures as Biocompatible Antibacterial Materials”, Nano-Micro Lett., 2020, 12, 73.
  • Dang, X., Liu, P., Yang, M., Deng, H., Shan, Z., Zhen, W., “Production and characterization of dialdehyde cellulose through green and sustainable approach”, Cellulose, 2019, 26, 9503-9515.
  • Plappert, S. F., Quraishi, S., Pircher, N., Mikkonen, K. S., Veigel, S., Klinger, K. M., Potthast A., Rosenau, T., and Liebner, F. W., “Transparent, Flexible, and Strong 2,3-Dialdehyde Cellulose Films with High Oxygen Barrier Properties”, Biomacromolecules, 2018, 19, 2969-2978.
  • Ramanjaneyulu, B., Venkatachalapathi, N., Prasanthi, G., “Tensile and Micro Structural Properties Analysis of Biodegradable Polymer Blends”, International Journal of Recent Technology and Engineering (IJRTE), 2019, Vol-8, Issue-2, 1866-1868.
  • Hu, Y., Daoud, W. A., Cheuk, K. K. L., and Lin, C. S. K., “Newly Developed Techniques on Polycondensation, Ring-Opening Polymerization and Polymer Modification: Focus on Poly(Lactic Acid)”, Materials, 2016, 9, 133, 1-14.
  • Somphol, W., Lampang, T. N., Prapainainar, Paweena., Sae-Oui, P., Loykulnant, S., Seubsai, A., Dittanet, P., “Effect of Polyethylene Glycol in Nanocellulose/PLA Composites”, Key Engineering Materials, 2019, 821, 89-95.
  • Rasal, R. M., Janorkar, A. V., Hirt, D. E., “Poly (lactic acid) modification”, Progress in Polymer Science, 2010, 35, 338-356.
  • Claro, P. I. C., Neto, A. R. S., Bibbo, A. C. C., Mattoso, L. H. C., Bastos, M. S. R., Marconcini, J. M., “Biodegradable Blends with Potential Use in Packaging: A Comparison of PLA/Chitosan and PLA/Cellulose Acetate Film”, J. Polym. Environ., 2016, 24, 363-371.
  • Song, R., Murphy, M., Li, C., Ting, K., Soo, C., Zheng, Z., “Current development of biodegradable polymeric materials for biomedical applications”, Drug Design, Development and Therapy, 2018, 12, 3117-3145.
  • Sucuoğlu, H. S., Böğrekçi, I., Demircioğlu, P., Gültekin, A., “The Effect of Three Dimensional Printed Infill Pattern on Structural Strength”, El-Cezerî Journal of Science and Engineering, 2018, 5(3), 785-796.
  • Qu, P., Bai, L., Gao, Y., Wu, G., Zhang, L., “Compatibilizing Effects of Poly (ethylene glycol) on PLA/Cellulose Nanowhiskers Composites”, Materials Science Forum, 2011, Vols. 1866-1869.
  • Xipo, Z., Hu, H., Wang, X., Yu, X., Zhou, W., Shaoxian, P., “Super tough poly(lactic acid) blends: a comprehensive review”, RSC Adv., 2020, 10, 13316-13368.
  • Nair, L. S., Laurencina, C. T., “Biodegradable polymers as biomaterial”, Prog. Polym. Sci., 2007, 32, 762-798.
  • Luckachan, G. E., Pillai, C. K. S., “Biodegradable Polymers-A Review on Recent Trends and Emerging Perspectives”, J. Polym. Environ., 2011, 19, 637-676.
  • Frone, A. N., Berlioz, S., Chailan, J. F., Panaitescu, D. M., Donescu, D., “Cellulose Fiber-Reinforced Polylactic Acid”, Polymer composite, 2011, 976-985.
  • Plappert, S. F., Quraishi, S., Pircher, N., Mikkonen, K. S., Veigel, S., Klinger, K. M., Potthast, A., Rosenau, T., and Liebner, F. W., “Transparent, Flexible, and Strong 2,3-Dialdehyde Cellulose Films with High Oxygen Barrier Properties”, Biomacromolecules, 2018, 19, 2969-2978.
  • Hell, S., Ohkawa, K., Amer, H., Potthast, A., Rosenau, T., “Dialdehyde Cellulose Nanofıbers By Electrospinning As Polyvinyl Alcohol Blends: Manufacture And Product Characterization”, Journal of Wood Chemistry and Technology, 2018, 38, 96-110.
  • Syamani, F. A., Kurniawan, Y. D., and Suryanegara, L., “Oxidized Cellulose Fibers for Reinforment in Poly (Lactic Acid) Based Composite”, Asian J. Chem., 2018, Vol. 30, No. 7.
  • Zhang, J. F., Sun, X., “Mechanical and thermal properties of poly (lactic acid)/starch blends with dioctyl maleate”, Journal of Applied Polymer Science, 2004, Vol. 94, 1697-1704.
  • Dang, X., Liu, P., Yang, M., Deng, H., Shan, Z., Zhen, W., “Production and characterization of dialdehyde cellulose through green and sustainable approach”, Cellulose, 2019, 26, 9503-9515.
  • Hoglund, E., “Production of dialdehyde cellulose and periodate regeneration: towards feasible oxidation processes”, Master Thesis, Karlstad University, Faculty of Health, Science and Technology, Department of Engineering and Chemical Sciences, 2015.
  • Chieng, B. W., Ibrahim, N. A., Yunus, W. M. Z. W., Hussein, M. Z., “Poly(lactic acid)/Poly(ethylene glycol) Polymer Nanocomposites: Effects of Graphene Nanoplatelets”, Polymers, 2014, 6, 93-104.
  • Qu, P., Gao Y., Wu, G., and Zhang, L., “PLA/Cellulose Nanocomposites, BioResources”, 2010, 5(3), 1811-1823.
  • Leja, K., Lewandowicz, G., “Polymers Biodegradation and Biodegradable Polymers–a Review”, Pol. J. of Environ. Stud., 2010, Vol. 19, No. 2, 255-266.
  • Sundararajan, S., Samui, A. B., Kulkarni, P. S., “Shape-stabilized poly(ethylene glycol) (PEG)-cellulose acetate blend preparation with superior PEG loading via microwave-assisted blending”, Solar Energy, 2017, 144, 32-3.
  • Kim, Y. F., Choi, C. N., Kim, Y. D., Lee, K. Y., and Lee, M. S., “Compatibilization of Immiscible Poly(l-lactide) and Low Density Polyethylene Blend”, Fibers and Polymers, 2004, vol.5, no.4, 270-274.
  • Nofar, M., Sacligil, D., Carreau, P. J., Kamal, M. R., Heuzey, M. C., “Poly (lactic acid) blends: Processing, properties and application”, International Journal of Biological Macromolecules, 2019, 125, 307-360.
  • Bualuang, W., Threepopnatkul, P., and Sittattrakul, A., “Mechanical properties and foaming behavior of Poly(lactic acid) blend Polybutylene Succinate”, Materials Science and Engineering, 2020, 965, 012030.
  • Doğu, B., Kaynak, C., “Behavior of polylactide/microcrystalline cellulose biocomposites: effects of filler content and interfacial compatibilization”, Cellulose, 2016, 23, 611-622.
There are 37 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Kamil Şirin 0000-0002-0632-5848

Ü.gülsüm Seziş This is me 0000-0001-5533-8939

Emriye Ay 0000-0003-4611-7530

Publication Date September 30, 2021
Submission Date March 20, 2021
Acceptance Date June 25, 2021
Published in Issue Year 2021 Volume: 8 Issue: 3

Cite

IEEE K. Şirin, Ü. Seziş, and E. Ay, “Preparation and Characterization of 2,3-Dialdehyde Cellulose/Polylactic Acid Biodegradable Blends”, El-Cezeri Journal of Science and Engineering, vol. 8, no. 3, pp. 1158–1169, 2021, doi: 10.31202/ecjse.899815.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png