Research Article
BibTex RIS Cite

Gelişmiş Bir Güneş Kolektörünün Tasarımı Ve Analizi

Year 2021, Volume: 8 Issue: 3, 1272 - 1285, 30.09.2021
https://doi.org/10.31202/ecjse.915069

Abstract

Bu çalışmada, 36 m2 alana sahip iki eksenli bir parabolik çanak güneş kolektörü tasarlanmış, CFD yöntemleri ile analiz edilmiş, yerel bir atölyede üretilmiş ve sahada deneysel olarak test edilmiştir. Solar-kavite ısı alıcısı, bir tarafı açık silindir bir kap olup, iç çapı 624mm ve derinliği 665 milimetredir. Silindirik yükseklik boyunca spiral bobinaj ve tabanında aynı borudan helisel bobinaj bulunur. Mükemmel ayna yüzey yaklaşımıyla yapılan optik analiz sonucunda yoğunlaştırılmış günışığının odak noktasındaki çapının 200mm olduğu hesaplanmış, ancak bu çap değeri gerçek yüzeydeki kusurlar ve aynaların yönelimlerindeki küçük sapmalar sebebiyle spiral borunun dış çapına eşit alınmıştır. Sınır koşullarının hacimsel debi, suyun giriş sıcaklığı ve hat basıncına ait gerçek verilerle oluşturulduğu CFD modeli ile gerçekleştirilen analiz gerçek sistemin ölçüm verilerine yakınlık göstermiş olup, proses ısı ışınımının hesaplamalara dahil edilmesiyle analizlerin daha iyileştirilebileceğine işaret etmektedir. Sistemin yaklaşık 30 dakikalık bir süreçte gündüz saatlerinde kalıcı durum karakteristiği göstermesine dayanılarak, bir dizi ölçümler gerçekleştirilmiştir. Elde edilen analitik, nümerik ve deneysel veriler karşılaştırılmıştır. Analitik çıkış sıcaklığının deneysel sıcaklıktan 1.07% yüksek olduğu, hesaplamalı yöntem ile bulunan sıcaklığın deneysel sıcaklıktan 0.15% yüksek olduğu tespit edilmiştir.

References

  • [1]. Kumar, A., Prakash, O., Kaviti, A., K., A Comprehensive Review of Scheffler Solar Collector, Renewable and Sustainable Energy Reviews, 2017 (77), 890-898.
  • [2]. Tan, Y., Zhao, L., Bao, J., Liu, Q., Experimental Investigation on Heat Loss of Semi-spherical Cavity Receiver, Energy Conversion and Management, 2014, (87), 576-583.
  • [3]. Li, H., Huang, W., Huang, F., Hu, P., Chen, Z., Optical Analysis and Optimization of Parabolic Dish Solar Concentrator with a Cavity Receiver, Solar Energy, 2013 (92), 288- 297.
  • [4]. Kurup, P., Turchi, C., Initial Investigation into the Potential of CSP Industrial Process Heat for the South West United States, National Renewable Energy Laboratory, USA.
  • [5]. Bahçeci, S., Daldaban, F., Dağıtım Şebekelerinde Güneş Panelleri ve Enerji Depolama Uygulaması, El-Cezerî Journal of Science and Engineering, 2017 (4), 308-313.
  • [6]. Alcan, Y., Demir, M., Duman, S., Sinop İlinin Güneş Enerjisinden Elektrik Üretim Potansiyelinin Ülkemiz ve Almanya ile Karşılaştırılarak İncelenmesi, El-Cezerî Journal of Science and Engineering, 2018 (5), 35-44.
  • [7]. Çelen, S., Arda, S. O., Karataşer, M. A., Güneş Enerji Destekli Mikrodalga Konveyor Kurutucu Kullanılarak Kuruma Davranışının Modellenmesi, El-Cezerî Journal of Science and Engineering, 2018 (5), 267-271.
  • [8]. Tan, F., Shojaei, S., Past to Present: Solar Chimney Power Technologies, El-Cezerî Journal of Science and Engineering, 2019 (6), 220-235.
  • [9]. Kırbaş, İ., Çifci, A., Feasibility Study of a Solar Power Plant Installation: A Case Study of Lake Burdur, Turkey, El-Cezerî Journal of Science and Engineering, 2017 (6), 830-835.
  • [10]. Desai, N. B., Bandyopadhyay, S., Nayak, J.K., Banerjee, R., Kedare, S. B., Simulation of a 1MWe Solar Thermal Power Plant, Energy Procedia, 2014 (57), 507-516.
  • [11]. Solangi, K.H, Islam, M. R., Saidur, R., Rahim, N. A., Fayaz, H., A Review on Global Solar Energy Policy, Renewable and Sustainable Energy Reviews, 2011 (15), 2149-2163.
  • [12]. Desai, N. B., Bandyopadhyay, S., Thermo-economic Comparisons Between Solar Steam Rankine and Organic Rankine Cycles, Applied Thermal Engineering, 2016 (105), 862-875.
  • [13]. Pavlovic, S., Daabo, A. M., Bellos, E., Stefanovic, V., Mahmoud, S., Al-Dabah, R. K., Experimental and Numerical Investigation on the Optical and Thermal Performance of Solar Parabolic Dish and Corrugated Spiral Cavity Receiver, Journal of Cleaner Production, 2017 (150), 75-92.
  • [14]. Rafeeu, Y., Kadir, M. Z. A., Thermal Performance of Parabolic Concentrators Under Malaysian Environment: A Case Study, Renewable and Sustainable Energy Reviews, 2012 (16), 3826-3835.
  • [15]. Andrade, L.A., Barrozo, M.A.S., Vieira, L.G.M., A Study on Dynamic Heating in Solar Dish Concentrators, Renewable Energy, 2016 (87), 501-508.
  • [16]. Azzouzi, D., Boumeddane, B., Abene, A., Experimental and Analytical Thermal Analysis of Cylindrical Cavity Receiver for Solar Dish, Renewable Energy, 2017 (106), 111-121.
  • [17]. Kanatani, A., Yamamoto, T., Tamaura, Y., Kikura, H., A Model of a Solar Cavity Receiver with Coiled Tubes, Solar Energy 2017 (153), 249–261.
  • [18]. Lee, K. L., Jafarian, M., Ghanadi, F., Arjomandi, M., Nathan, G., An Investigation into the Effect of Aspect Ratio on the Heat Loss from a Solar Cavity Receiver, Solar Energy, 2017 (149), 20-31.
  • [19]. Reddy, K. S., Veershetty, G., Vikram, T. S., Effect of Wind Speed and Direction on Convective Heat Losses from Solar Parabolic Dish Modified Cavity Receiver, Solar Energy, 2016 (131), 183-198.
  • [20]. Samanes, J., Garcia-Baberena, J., Zaversky, F., Modeling Solar Cavity Receivers: A Review and Comparison of Natural Convection Heat Loss Correlations, Energy Procedia, 2015 (69), 543-552.
  • [21]. Zou, C., Zhang, Y., Falcoz, Q., Neveu, P., Li, J., Zhang, C., Thermal Modeling of a Pressurized Air Cavity Receiver for Solar Dish Stirling System, AIP Conference Proceedings, 2017, 18-50.
  • [22]. Loni, R., Ardeh, E. A. A., Ghobadian, B., Bellos, E., Numerical investigation of a solar dish concentrator with different cavity receivers and working fluids, Journal of Cleaner Production, 2018 (198).
  • [23]. Yang, S., Wang, J., Lund, P., Wang, S., Jiang, C., Reducing convective heat losses in solar dish cavity receivers through a modified air-curtain system, Solar Energy, 2018 (166), 50-58.
  • [24]. Bopche, S.B., Kumar, S., Experimental Investigations on thermal performance characteristics of a Solar Cavity Receiver, International Journal of Energy and Environmental Engineering, 2016 (10), 463-481.
  • [25]. Bellos, E., Bousi, E., Tzivanidis, C., Pavlovic, S., Optical and thermal analysis of different cavity receiver designs for solar dish concentrators, Energy Conversion and Management, 2019 (10-2).
  • [26]. Barbosa, F., Afonso, J. L., Rodrigues, F. B., Teixeira, J., Development of a Solar Concentrator with Tracking System, Mechanical Science, 2016 (7), 233–245.
  • [27]. Gorjan, S., Hashjin, T. T., Ghobadian, B., Thermal Performance of a Point-focus Solar Steam Generating System, Proceedings, 21st Annual International Conference on Mechanical Engineering, ISME, 2013.

An Improved Design And Analysis of A Solar Receiver

Year 2021, Volume: 8 Issue: 3, 1272 - 1285, 30.09.2021
https://doi.org/10.31202/ecjse.915069

Abstract

In this study, a solar cavity heat receiver for a 36 m² two-axis parabolic dish collector has been designed, analyzed by employing computational fluid dynamics (CFD), manufactured in a local workshop, and then tested experimentally on site. The receiver is an open type with a diameter of 624mm and a depth of 665mm and has a steel pipe spiral tubing with a helical tubing at the bottom. The diameter of the concentrated sunlight at the focal point was found to be 200 mm as a result of optical analysis with perfect mirror surface approach. The CFD model of the receiver, assuming the actual boundary conditions such as volumetric flow rate, input temperature of circulating water and line pressure showed that analyses approached the actual process, and also the process indicated that the analyses can be improved by taking into account the thermal radiation. Since for a period of approximately 30 minutes the system showed a steady-state characteristic during the daytime, a set of experimental measurements were carried out. It was found that the analytical outlet temperature was 1.07% higher than the experimentally measured outlet temperature, and the numerical temperature was 0.15% higher than the experimental result.

References

  • [1]. Kumar, A., Prakash, O., Kaviti, A., K., A Comprehensive Review of Scheffler Solar Collector, Renewable and Sustainable Energy Reviews, 2017 (77), 890-898.
  • [2]. Tan, Y., Zhao, L., Bao, J., Liu, Q., Experimental Investigation on Heat Loss of Semi-spherical Cavity Receiver, Energy Conversion and Management, 2014, (87), 576-583.
  • [3]. Li, H., Huang, W., Huang, F., Hu, P., Chen, Z., Optical Analysis and Optimization of Parabolic Dish Solar Concentrator with a Cavity Receiver, Solar Energy, 2013 (92), 288- 297.
  • [4]. Kurup, P., Turchi, C., Initial Investigation into the Potential of CSP Industrial Process Heat for the South West United States, National Renewable Energy Laboratory, USA.
  • [5]. Bahçeci, S., Daldaban, F., Dağıtım Şebekelerinde Güneş Panelleri ve Enerji Depolama Uygulaması, El-Cezerî Journal of Science and Engineering, 2017 (4), 308-313.
  • [6]. Alcan, Y., Demir, M., Duman, S., Sinop İlinin Güneş Enerjisinden Elektrik Üretim Potansiyelinin Ülkemiz ve Almanya ile Karşılaştırılarak İncelenmesi, El-Cezerî Journal of Science and Engineering, 2018 (5), 35-44.
  • [7]. Çelen, S., Arda, S. O., Karataşer, M. A., Güneş Enerji Destekli Mikrodalga Konveyor Kurutucu Kullanılarak Kuruma Davranışının Modellenmesi, El-Cezerî Journal of Science and Engineering, 2018 (5), 267-271.
  • [8]. Tan, F., Shojaei, S., Past to Present: Solar Chimney Power Technologies, El-Cezerî Journal of Science and Engineering, 2019 (6), 220-235.
  • [9]. Kırbaş, İ., Çifci, A., Feasibility Study of a Solar Power Plant Installation: A Case Study of Lake Burdur, Turkey, El-Cezerî Journal of Science and Engineering, 2017 (6), 830-835.
  • [10]. Desai, N. B., Bandyopadhyay, S., Nayak, J.K., Banerjee, R., Kedare, S. B., Simulation of a 1MWe Solar Thermal Power Plant, Energy Procedia, 2014 (57), 507-516.
  • [11]. Solangi, K.H, Islam, M. R., Saidur, R., Rahim, N. A., Fayaz, H., A Review on Global Solar Energy Policy, Renewable and Sustainable Energy Reviews, 2011 (15), 2149-2163.
  • [12]. Desai, N. B., Bandyopadhyay, S., Thermo-economic Comparisons Between Solar Steam Rankine and Organic Rankine Cycles, Applied Thermal Engineering, 2016 (105), 862-875.
  • [13]. Pavlovic, S., Daabo, A. M., Bellos, E., Stefanovic, V., Mahmoud, S., Al-Dabah, R. K., Experimental and Numerical Investigation on the Optical and Thermal Performance of Solar Parabolic Dish and Corrugated Spiral Cavity Receiver, Journal of Cleaner Production, 2017 (150), 75-92.
  • [14]. Rafeeu, Y., Kadir, M. Z. A., Thermal Performance of Parabolic Concentrators Under Malaysian Environment: A Case Study, Renewable and Sustainable Energy Reviews, 2012 (16), 3826-3835.
  • [15]. Andrade, L.A., Barrozo, M.A.S., Vieira, L.G.M., A Study on Dynamic Heating in Solar Dish Concentrators, Renewable Energy, 2016 (87), 501-508.
  • [16]. Azzouzi, D., Boumeddane, B., Abene, A., Experimental and Analytical Thermal Analysis of Cylindrical Cavity Receiver for Solar Dish, Renewable Energy, 2017 (106), 111-121.
  • [17]. Kanatani, A., Yamamoto, T., Tamaura, Y., Kikura, H., A Model of a Solar Cavity Receiver with Coiled Tubes, Solar Energy 2017 (153), 249–261.
  • [18]. Lee, K. L., Jafarian, M., Ghanadi, F., Arjomandi, M., Nathan, G., An Investigation into the Effect of Aspect Ratio on the Heat Loss from a Solar Cavity Receiver, Solar Energy, 2017 (149), 20-31.
  • [19]. Reddy, K. S., Veershetty, G., Vikram, T. S., Effect of Wind Speed and Direction on Convective Heat Losses from Solar Parabolic Dish Modified Cavity Receiver, Solar Energy, 2016 (131), 183-198.
  • [20]. Samanes, J., Garcia-Baberena, J., Zaversky, F., Modeling Solar Cavity Receivers: A Review and Comparison of Natural Convection Heat Loss Correlations, Energy Procedia, 2015 (69), 543-552.
  • [21]. Zou, C., Zhang, Y., Falcoz, Q., Neveu, P., Li, J., Zhang, C., Thermal Modeling of a Pressurized Air Cavity Receiver for Solar Dish Stirling System, AIP Conference Proceedings, 2017, 18-50.
  • [22]. Loni, R., Ardeh, E. A. A., Ghobadian, B., Bellos, E., Numerical investigation of a solar dish concentrator with different cavity receivers and working fluids, Journal of Cleaner Production, 2018 (198).
  • [23]. Yang, S., Wang, J., Lund, P., Wang, S., Jiang, C., Reducing convective heat losses in solar dish cavity receivers through a modified air-curtain system, Solar Energy, 2018 (166), 50-58.
  • [24]. Bopche, S.B., Kumar, S., Experimental Investigations on thermal performance characteristics of a Solar Cavity Receiver, International Journal of Energy and Environmental Engineering, 2016 (10), 463-481.
  • [25]. Bellos, E., Bousi, E., Tzivanidis, C., Pavlovic, S., Optical and thermal analysis of different cavity receiver designs for solar dish concentrators, Energy Conversion and Management, 2019 (10-2).
  • [26]. Barbosa, F., Afonso, J. L., Rodrigues, F. B., Teixeira, J., Development of a Solar Concentrator with Tracking System, Mechanical Science, 2016 (7), 233–245.
  • [27]. Gorjan, S., Hashjin, T. T., Ghobadian, B., Thermal Performance of a Point-focus Solar Steam Generating System, Proceedings, 21st Annual International Conference on Mechanical Engineering, ISME, 2013.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Ömer Ersöz This is me 0000-0002-5751-8594

Yunus Çerçi 0000-0002-4462-5366

Orçun Ekin 0000-0002-6779-885X

Publication Date September 30, 2021
Submission Date April 16, 2021
Acceptance Date July 27, 2021
Published in Issue Year 2021 Volume: 8 Issue: 3

Cite

IEEE Ö. Ersöz, Y. Çerçi, and O. Ekin, “An Improved Design And Analysis of A Solar Receiver”, El-Cezeri Journal of Science and Engineering, vol. 8, no. 3, pp. 1272–1285, 2021, doi: 10.31202/ecjse.915069.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png