Sistem modelleme, teori ile deneysel çalışmaların birleşmesini sağlayan, araştırma faaliyetlerinde önemli yer tutan bilimsel bir yöntemdir. Sistem modeli ile gerçek test ve deneylerle elde edilecek verilerin, maliyet açısından daha ekonomik ve zamandan tasarrufla sistemin kritik noktalarının temini sağlanmaktadır. Bazı sistem modellerinin sadece analitik denklem ve yöntemlerle elde edilmesi oldukça zordur. Bu noktada, yapay sinir ağları, karmaşık, belirsiz, doğrusal olmayan sistemlerin modellenmesinde alternatif bir yoldur. Yapay sinir ağları, insan beynini örnek alarak, mevcut örneklerden öğrenen, gürültülü, eksik, doğrusal olmayan verilerle sonuç üretebilen, bir kez öğrendikten sonra yüksek hızda ve doğrulukta tahmin ve genelleme yapabilen bir yapay zeka sistemidir. Bu çalışmada, eğitim amaçlı deneysel bir süreç denetim sistemi olan, GUNT Hamburg firmasının üretmiş olduğu RT512 sıvı seviye denetim sisteminin yapay sinir ağı ile modellenmesi gerçekleştirilmiştir. Dinamik modelin oluşturulması için, sistem açık çevrim modunda çalıştırılarak, bir giriş-çıkış veri seti oluşturulmuştur. Bu sette, verilen kontrol işaretine karşılık sıvı seviye tüpünde görülen seviye değişimi dikkate alınmıştır. Bu işlem için, bilgisayar, Arduino, MCP4725 DAC, akım/gerilim, gerilim/akım dönüştürücüler kullanılarak belli sayıda giriş verisine karşılık, belli sayıda çıkış verisi elde edilmiştir. Geliştirilen YSA modelinde regresyon eğrileri ile model çıkışı ile sistemden alınan test verileri arasındaki ilişki görülmüş olup yüksek doğruluk elde edilmiştir.
Sıvı seviye denetimi yapay sinir ağları sistem modelleme GUNT RT 512 geri yayılım algoritması
System modeling is a scientific method that combines theory with experimental studies and has an important place in research activities. With the system model, the data to be obtained through real tests and experiments are provided more economically in terms of cost and the critical points of the system are provided with time savings. Some system models are very difficult to obtain using only analytical equations and methods. At this point, artificial neural networks are an alternative way to model complex, uncertain, nonlinear systems. Artificial neural network is an artificial intelligence system that takes the human brain as an example, learns from existing examples, can produce results with noisy, incomplete, non-linear data, and can make predictions and generalizations with high speed and accuracy after learning once. In this study, RT 512 liquid level control system produced by GUNT Hamburg, an experimental process control system for educational purposes, was modeled with an artificial neural network. In order to create the dynamic model, an input-output data set was created by operating the system in open-loop mode. In this set, the level change seen in the liquid level tube against the given control sign has been taken into account. For this process, a certain number of output data was obtained for a certain number of input data by using computer, Arduino, MCP4725 DAC, current/voltage, voltage/current converters. In the developed ANN model, the relationship between the regression curves and the model output and the test data taken from the system was observed and high accuracy was obtained.
Liquid level control artificial neural networks system modeling GUNT RT 512 back propagation algorithm
Primary Language | Turkish |
---|---|
Subjects | Engineering |
Journal Section | Makaleler |
Authors | |
Publication Date | December 31, 2022 |
Submission Date | June 22, 2022 |
Acceptance Date | September 7, 2022 |
Published in Issue | Year 2022 Volume: 9 Issue: 4 |