Research Article
BibTex RIS Cite

Molecular identification of protease producer ORSK-4 strain and determination of optimum enzyme production conditions

Year 2024, Volume: 7 Issue: 1, 26 - 40, 30.06.2024
https://doi.org/10.46239/ejbcs.1433566

Abstract

A microorganism resistant to high temperatures and producing alkaline proteases was isolated from soil samples from a protein-rich region (Kırıkkale/Yahşihan). This isolate, with high protein production, was identified as ORSK-4 by determining its morphological and biochemical properties using the 16s rRNA molecular approach and the Amplified ribosomal DNA restriction analysis (ARDRA) technique employed in strain differentiation. The optimum enzyme production conditions of the strain ORSK-4 were found to be the enzyme media, 3 days of incubation, 27.0 °C, and pH 7.0. Different components were utilized to determine the effect of changing the medium content on enzyme activity. Under the optimal production conditions determined in this way, the enzyme activity of ORSK-4 was found to be higher than that of some ATCC reference Bacillus species. To purify the extracellular protease of ORSK-4, precipitation with ammonium sulfate (30% and 80%), dialysis, and DEAE ion exchange chromatography were performed. SDS-PAGE analysis determined the molecular weight of the purified enzyme as approximately 30 kDa. Although the enzyme showed activity at various pH ranges, it showed its maximum activity when increased up to pH 9.0. In conclusion, the stability of the obtained alkaline protease enzyme under different conditions shows that it can be used in industrial and environmental applications.

Project Number

BAP 2016/067

References

  • Abu-Khudir R, Salem MM, Allam NG, Ali EMM. 2019. Production, Partial Purification, and Biochemical Characterization of a Thermotolerant Alkaline Metallo-Protease from Staphylococcus Sciuri. Appl Biochem Biotechnol. 189: 87–102. doi.org/10.1007/s12010-019-02983-6.
  • Abusham RA, Rahman RNZRA, Salleh A, Basri M. 2009. Optimization of Physical Factors Affecting the Production of Thermo-Stable Organic Solvent-Tolerant Protease from a Newly Isolated Halo Tolerant Bacillus subtilis Strain Rand. Microb Cell Fact. 8: 1–9. doi.org/10.1186/1475-2859-8-20/FIGURES/7.
  • Adrio J, Demain A. 2014. Microbial Enzymes: Tools for Biotechnological Processes. Biomol. 4: 117–139. doi.org/10.3390/biom4010117.
  • Ahmetoglu N, Bekler FM, Acer Ö, Gül-Güven R. 2015. Production, Purification and Characterisation of Thermostable Metallo-Protease from Newly Isolated Bacillus Sp. KG5. Eurasian J Biosci. 9: 1–11.
  • Asha B, Palaniswamy M. 2018. Optimization of Alkaline Protease Production by Bacillus cereus FT 1isolated from Soil. J Appl Pharm Sci. 8: 119–127. doi.org/10.7324/JAPS.2018.8219.
  • Bron S, Meima R, Maarten Van Dijl J, Wipat A, Harwood CR. 1990. Molecular Biology and Genetics of Bacillus Species. Genetic analysis. 27–74.
  • Gessesse A, Gashe BA. 1997. Production of Alkaline Protease by an Alkaliphilic Bacteria Isolated from an Alkaline Soda Lake. Biotechnol Lett. 19: 479–481.
  • Hashmi S, Iqbal S, Ahmed I, Janjua HA. 2022. Production, Optimization, and Partial Purification of Alkali-Thermotolerant Proteases from Newly Isolated Bacillus subtilis S1 and Bacillus amyloliquefaciens KSM12. Processes. 10: 1050. doi.org/10.3390/PR10061050.
  • Jadhav HP, Sonawane MS, Khairnar MH, Sayyed RZ. 2020. Production of Alkaline Protease by Rhizospheric Bacillus cereus HP_RZ17 and Paenibacillus xylanilyticus HP_RZ19. J. Environ. Sustain. 3: 5–13. doi.org/10.1007/S42398-020-00096-Z.
  • Karray A, Alonazi M, Horchani H, Ben Bacha AA. 2021. Novel Thermostable and Alkaline Protease Produced from Bacillus stearothermophilus Isolated from Olive Oil Mill Sols Suitable to Industrial Biotechnology. Molecules. 26: 1139. doi.org/10.3390/molecules26041139.
  • Kazan D, Denizci AA, Öner MNK, Erarslan A. 2005. Purification and Characterization of a Serine Alkaline Protease from Bacillus clausii GMBAE 42. J Ind Microbiol Biotechnol. 32: 335–344. doi.org/10.1007/s10295-005-0260-z.
  • Kurabachew M, Enger Ø, Sandaa RA, Lemma E, Bjorvatn B. 2003. Amplified Ribosomal DNA Restriction Analysis in the Differentiation of Related Species of Mycobacteria. J Microbiol Methods. 55: 83–90. doi.org/10.1016/S0167-7012(03)00119-2.
  • Mason SD, Joyce JA. 2011. Proteolytic Networks in Cancer. Trends Cell Biol. 21: 228–237. doi.org/10.1016/j.tcb.2010.12.002.
  • Panigrahi S, Velraj P, Subba Rao T. 2019. Functional Microbial Diversity in Contaminated Environment and Application in Bioremediation. Microbial Diversity in the Genomic Era. 359–385. doi.org/10.1016/B978-0-12-814849-5.00021-6.
  • Rao M B, Aparna M. Tanksale, Mohini S. Ghatge, and Vasanti V. D, 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev. 62(3): 597-635. doi: 10.1128/mmbr.62.3.597-635.1998.
  • Reddy MS, Kanwal HK. 2022. Influence of Carbon, Nitrogen Sources, Inducers, and Substrates on Lignocellulolytic Enzyme Activities of Morchella Spongiola. J Agric Food Res. 7: 100271. doi.org/10.1016/J.JAFR.2022.100271.
  • Sharma KM, Kumar R, Panwar S, Kumar A. 2017. Microbial Alkaline Proteases: Optimization of Production Parameters and Their Properties. J. Genet. Eng. Biotechnol. 15: 115–126. doi.org/10.1016/j.jgeb.2017.02.001.
  • Singh J, Batra N, Sobti RC. 2001. Serine Alkaline Protease from a Newly Isolated Bacillus sp. SSR1. Process Biochem. 8–9: 781–785.
  • Solanki P, Putatunda C, Kumar A, Bhatia R, Walia A. 2021. Microbial Proteases: Ubiquitous Enzymes with Innumerable Uses. Biotech. 3-11: 428. doi.org/10.1007/s13205-021-02928-z.
  • Suberu Y, Akande I, Samuel T, Lawal A, Olaniran A. 2019. Optimization of Protease Production in Indigenous Bacillus Species Isolated from Soil Samples in Lagos, Nigeria Using Response Surface Methodology. Biocatal Agric Biotechnol. 18: 101011. doi.org/10.1016/J.BCAB.2019.01.049.
  • Takami H, Akiba T, Horikoshi K. 1989. Production of Extremely Thermostable Alkaline Protease from Bacillus Sp. No. AH-101. Appl Microbiol Biotechnol. 30: 120–124. doi.org/10.1007/BF00263997/METRICS.
  • Ullah N, Rehman MU, Sarwar A, Nadeem M, Nelofer R, Shakir HA, Irfan M, Idrees M, Naz S, Nabi G, Shah S, Aziz T, Alharbi M, Alshammari A, Alqahtani F. 2022. Purification, Characterization, and Application of Alkaline Protease Enzyme from a Locally Isolated Bacillus cereus Strain. Fermentation. 8: 628. doi.org/10.3390/FERMENTATION8110628.
  • Varol A, Albayrak S, Ozkan H, Demir Y, Taskin M, Adiguzel A. 2023. Production, Purification and Characterization of Novel Fibrinolytic Enzyme from Bacillus atrophaeus V4. Biologia (Bratisl). 78: 591–600. doi.org/10.1007/S11756-022-01281-7/FIGURES/5.
  • Verma J, Pandey S. 2019. Characterization of Partially Purified Alkaline Protease Secreted by Halophilic Bacterium Citricoccus Sp. Isolated from Agricultural Soil of Northern India. Biocatal Agric Biotechnol. 17: 605–612. doi.org/10.1016/J.BCAB.2019.01.020.
  • Yu C, Hongwei G, Yanming Z, Mingjun D, Zhenxing W, Laihua Z, Qing D, Biao X, Chengzhu L, Zhiqin Y, Xizhi X. 2012. Analysis of the Bacterial Diversity Existing on Animal Hide and Wool: Development of a Preliminary PCR-Restriction Fragment Length Polymorphism Fingerprint Database for Identifying Isolates. J AOAC Int. 95: 1750–1754. doi.org/10.5740/jaoacint.11-482.
  • Zhang J, Zhu B, Li X, Xu X, Li D, Zeng F, Zhou C, Liu Y, Li Y, Lu F. 2022. Multiple Modular Engineering of Bacillus amyloliquefaciens Cell Factories for Enhanced Production of Alkaline Proteases from B. clausii. Front Bioeng Biotechnol. 10. doi.org/10.3389/fbioe.2022.866066.
Year 2024, Volume: 7 Issue: 1, 26 - 40, 30.06.2024
https://doi.org/10.46239/ejbcs.1433566

Abstract

Project Number

BAP 2016/067

References

  • Abu-Khudir R, Salem MM, Allam NG, Ali EMM. 2019. Production, Partial Purification, and Biochemical Characterization of a Thermotolerant Alkaline Metallo-Protease from Staphylococcus Sciuri. Appl Biochem Biotechnol. 189: 87–102. doi.org/10.1007/s12010-019-02983-6.
  • Abusham RA, Rahman RNZRA, Salleh A, Basri M. 2009. Optimization of Physical Factors Affecting the Production of Thermo-Stable Organic Solvent-Tolerant Protease from a Newly Isolated Halo Tolerant Bacillus subtilis Strain Rand. Microb Cell Fact. 8: 1–9. doi.org/10.1186/1475-2859-8-20/FIGURES/7.
  • Adrio J, Demain A. 2014. Microbial Enzymes: Tools for Biotechnological Processes. Biomol. 4: 117–139. doi.org/10.3390/biom4010117.
  • Ahmetoglu N, Bekler FM, Acer Ö, Gül-Güven R. 2015. Production, Purification and Characterisation of Thermostable Metallo-Protease from Newly Isolated Bacillus Sp. KG5. Eurasian J Biosci. 9: 1–11.
  • Asha B, Palaniswamy M. 2018. Optimization of Alkaline Protease Production by Bacillus cereus FT 1isolated from Soil. J Appl Pharm Sci. 8: 119–127. doi.org/10.7324/JAPS.2018.8219.
  • Bron S, Meima R, Maarten Van Dijl J, Wipat A, Harwood CR. 1990. Molecular Biology and Genetics of Bacillus Species. Genetic analysis. 27–74.
  • Gessesse A, Gashe BA. 1997. Production of Alkaline Protease by an Alkaliphilic Bacteria Isolated from an Alkaline Soda Lake. Biotechnol Lett. 19: 479–481.
  • Hashmi S, Iqbal S, Ahmed I, Janjua HA. 2022. Production, Optimization, and Partial Purification of Alkali-Thermotolerant Proteases from Newly Isolated Bacillus subtilis S1 and Bacillus amyloliquefaciens KSM12. Processes. 10: 1050. doi.org/10.3390/PR10061050.
  • Jadhav HP, Sonawane MS, Khairnar MH, Sayyed RZ. 2020. Production of Alkaline Protease by Rhizospheric Bacillus cereus HP_RZ17 and Paenibacillus xylanilyticus HP_RZ19. J. Environ. Sustain. 3: 5–13. doi.org/10.1007/S42398-020-00096-Z.
  • Karray A, Alonazi M, Horchani H, Ben Bacha AA. 2021. Novel Thermostable and Alkaline Protease Produced from Bacillus stearothermophilus Isolated from Olive Oil Mill Sols Suitable to Industrial Biotechnology. Molecules. 26: 1139. doi.org/10.3390/molecules26041139.
  • Kazan D, Denizci AA, Öner MNK, Erarslan A. 2005. Purification and Characterization of a Serine Alkaline Protease from Bacillus clausii GMBAE 42. J Ind Microbiol Biotechnol. 32: 335–344. doi.org/10.1007/s10295-005-0260-z.
  • Kurabachew M, Enger Ø, Sandaa RA, Lemma E, Bjorvatn B. 2003. Amplified Ribosomal DNA Restriction Analysis in the Differentiation of Related Species of Mycobacteria. J Microbiol Methods. 55: 83–90. doi.org/10.1016/S0167-7012(03)00119-2.
  • Mason SD, Joyce JA. 2011. Proteolytic Networks in Cancer. Trends Cell Biol. 21: 228–237. doi.org/10.1016/j.tcb.2010.12.002.
  • Panigrahi S, Velraj P, Subba Rao T. 2019. Functional Microbial Diversity in Contaminated Environment and Application in Bioremediation. Microbial Diversity in the Genomic Era. 359–385. doi.org/10.1016/B978-0-12-814849-5.00021-6.
  • Rao M B, Aparna M. Tanksale, Mohini S. Ghatge, and Vasanti V. D, 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev. 62(3): 597-635. doi: 10.1128/mmbr.62.3.597-635.1998.
  • Reddy MS, Kanwal HK. 2022. Influence of Carbon, Nitrogen Sources, Inducers, and Substrates on Lignocellulolytic Enzyme Activities of Morchella Spongiola. J Agric Food Res. 7: 100271. doi.org/10.1016/J.JAFR.2022.100271.
  • Sharma KM, Kumar R, Panwar S, Kumar A. 2017. Microbial Alkaline Proteases: Optimization of Production Parameters and Their Properties. J. Genet. Eng. Biotechnol. 15: 115–126. doi.org/10.1016/j.jgeb.2017.02.001.
  • Singh J, Batra N, Sobti RC. 2001. Serine Alkaline Protease from a Newly Isolated Bacillus sp. SSR1. Process Biochem. 8–9: 781–785.
  • Solanki P, Putatunda C, Kumar A, Bhatia R, Walia A. 2021. Microbial Proteases: Ubiquitous Enzymes with Innumerable Uses. Biotech. 3-11: 428. doi.org/10.1007/s13205-021-02928-z.
  • Suberu Y, Akande I, Samuel T, Lawal A, Olaniran A. 2019. Optimization of Protease Production in Indigenous Bacillus Species Isolated from Soil Samples in Lagos, Nigeria Using Response Surface Methodology. Biocatal Agric Biotechnol. 18: 101011. doi.org/10.1016/J.BCAB.2019.01.049.
  • Takami H, Akiba T, Horikoshi K. 1989. Production of Extremely Thermostable Alkaline Protease from Bacillus Sp. No. AH-101. Appl Microbiol Biotechnol. 30: 120–124. doi.org/10.1007/BF00263997/METRICS.
  • Ullah N, Rehman MU, Sarwar A, Nadeem M, Nelofer R, Shakir HA, Irfan M, Idrees M, Naz S, Nabi G, Shah S, Aziz T, Alharbi M, Alshammari A, Alqahtani F. 2022. Purification, Characterization, and Application of Alkaline Protease Enzyme from a Locally Isolated Bacillus cereus Strain. Fermentation. 8: 628. doi.org/10.3390/FERMENTATION8110628.
  • Varol A, Albayrak S, Ozkan H, Demir Y, Taskin M, Adiguzel A. 2023. Production, Purification and Characterization of Novel Fibrinolytic Enzyme from Bacillus atrophaeus V4. Biologia (Bratisl). 78: 591–600. doi.org/10.1007/S11756-022-01281-7/FIGURES/5.
  • Verma J, Pandey S. 2019. Characterization of Partially Purified Alkaline Protease Secreted by Halophilic Bacterium Citricoccus Sp. Isolated from Agricultural Soil of Northern India. Biocatal Agric Biotechnol. 17: 605–612. doi.org/10.1016/J.BCAB.2019.01.020.
  • Yu C, Hongwei G, Yanming Z, Mingjun D, Zhenxing W, Laihua Z, Qing D, Biao X, Chengzhu L, Zhiqin Y, Xizhi X. 2012. Analysis of the Bacterial Diversity Existing on Animal Hide and Wool: Development of a Preliminary PCR-Restriction Fragment Length Polymorphism Fingerprint Database for Identifying Isolates. J AOAC Int. 95: 1750–1754. doi.org/10.5740/jaoacint.11-482.
  • Zhang J, Zhu B, Li X, Xu X, Li D, Zeng F, Zhou C, Liu Y, Li Y, Lu F. 2022. Multiple Modular Engineering of Bacillus amyloliquefaciens Cell Factories for Enhanced Production of Alkaline Proteases from B. clausii. Front Bioeng Biotechnol. 10. doi.org/10.3389/fbioe.2022.866066.
There are 26 citations in total.

Details

Primary Language English
Subjects Enzymes, Industrial Microbiology, Industrial Biotechnology (Other)
Journal Section Research Articles
Authors

Karcan Işık 0009-0005-5873-5610

Ümit Yırtıcı 0000-0002-0142-6105

Belgin Güldeste 0000-0002-4950-6235

Aysun Ergene

Project Number BAP 2016/067
Publication Date June 30, 2024
Submission Date February 7, 2024
Acceptance Date March 22, 2024
Published in Issue Year 2024 Volume: 7 Issue: 1

Cite

APA Işık, K., Yırtıcı, Ü., Güldeste, B., Ergene, A. (2024). Molecular identification of protease producer ORSK-4 strain and determination of optimum enzyme production conditions. Eurasian Journal of Biological and Chemical Sciences, 7(1), 26-40. https://doi.org/10.46239/ejbcs.1433566
AMA Işık K, Yırtıcı Ü, Güldeste B, Ergene A. Molecular identification of protease producer ORSK-4 strain and determination of optimum enzyme production conditions. Eurasian J. Bio. Chem. Sci. June 2024;7(1):26-40. doi:10.46239/ejbcs.1433566
Chicago Işık, Karcan, Ümit Yırtıcı, Belgin Güldeste, and Aysun Ergene. “Molecular Identification of Protease Producer ORSK-4 Strain and Determination of Optimum Enzyme Production Conditions”. Eurasian Journal of Biological and Chemical Sciences 7, no. 1 (June 2024): 26-40. https://doi.org/10.46239/ejbcs.1433566.
EndNote Işık K, Yırtıcı Ü, Güldeste B, Ergene A (June 1, 2024) Molecular identification of protease producer ORSK-4 strain and determination of optimum enzyme production conditions. Eurasian Journal of Biological and Chemical Sciences 7 1 26–40.
IEEE K. Işık, Ü. Yırtıcı, B. Güldeste, and A. Ergene, “Molecular identification of protease producer ORSK-4 strain and determination of optimum enzyme production conditions”, Eurasian J. Bio. Chem. Sci., vol. 7, no. 1, pp. 26–40, 2024, doi: 10.46239/ejbcs.1433566.
ISNAD Işık, Karcan et al. “Molecular Identification of Protease Producer ORSK-4 Strain and Determination of Optimum Enzyme Production Conditions”. Eurasian Journal of Biological and Chemical Sciences 7/1 (June 2024), 26-40. https://doi.org/10.46239/ejbcs.1433566.
JAMA Işık K, Yırtıcı Ü, Güldeste B, Ergene A. Molecular identification of protease producer ORSK-4 strain and determination of optimum enzyme production conditions. Eurasian J. Bio. Chem. Sci. 2024;7:26–40.
MLA Işık, Karcan et al. “Molecular Identification of Protease Producer ORSK-4 Strain and Determination of Optimum Enzyme Production Conditions”. Eurasian Journal of Biological and Chemical Sciences, vol. 7, no. 1, 2024, pp. 26-40, doi:10.46239/ejbcs.1433566.
Vancouver Işık K, Yırtıcı Ü, Güldeste B, Ergene A. Molecular identification of protease producer ORSK-4 strain and determination of optimum enzyme production conditions. Eurasian J. Bio. Chem. Sci. 2024;7(1):26-40.